Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Gromov-Hausdorff stability for semilinear systems with large diffusion
  • Home
  • /
  • Gromov-Hausdorff stability for semilinear systems with large diffusion
  1. Home /
  2. Archives /
  3. Vol 63, No 2 (June 2024) /
  4. Articles

Gromov-Hausdorff stability for semilinear systems with large diffusion

Authors

  • Jihoon Lee
  • Ngocthach Nguyen https://orcid.org/0000-0003-4169-8890
  • Leonardo Pires https://orcid.org/0000-0001-9414-7748

DOI:

https://doi.org/10.12775/TMNA.2023.034

Keywords

Gromov-Hausdorff stability, global attractors, large diffusivity, reaction-diffusion equations

Abstract

This paper deals with the Gromov-Hausdorff stability for systems generated of reaction-diffusion equations whose diffusion coefficients are simultaneously large in a bounded smooth domains. The appropriated framework is presented to establish the conjugation between the attractors by means o f $\varepsilon$-isometries.

References

A. Arbieto and C. Morales, Topological stability from Gromov–Hausdorff viewpoint, Discrete Contin. Dyn. Syst. 37 (2017), 3531–3544.

J.M. Arrieta and A.N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations 199 (2004), 143–178.

J.M. Arrieta, A.N. Carvalho and A. Rodrı́guez-Bernal, Attractors for parabolic problems with nonlinear boundary bondition. Uniform bounds, Comm. Partial Differential Equations 25 (2000), 1–37.

A.N. Carvalho and L. Pires, Rate of convergence of attractors for singularly perturbed semilinear problems, J. Math. Anal. Appl. 452 (2017), 258–296.

A.N. Carvalho and L. Pires, Parabolic equations with localized large diffusion: rate of convergence of attractors, Topol. Methods Nonlinear Anal. 53 (2019), 1–23.

A.N. Carvalho and M.R. Primo, Spatial homogeneity in parabolic problems with nonlinear boundary conditions, Commun. Pure Appl. Anal. 3 (2004), 637–651.

M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, Basel, 2007.

J.K. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal. Appl. 118 (1986), 455–466.

J.K. Hale and C. Rocha, Varying boundary conditions with large diffusion, J. Math. Pures Appl. 66 (1987), 139–158.

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer–Velag, 1980.

J. Lee, Gromov–Hausdorff stability of reaction diffusion equations with Neumann boundary conditions under perturbations of the domain, J. Math. Anal. Appl. 496 (2021), 1–18.

J. Lee and N. Nguyen, Topological stability of Chafee–Infante equation under Lipischitz perturbations of the domain and equation, J. Math. Anal. Appl. 517 (2023), 126628.

J. Lee, N. Nguyen and V.M. Toi, Gromov–Hausdorff stability of global attractors of reaction diffusion equations under perturbations of domain, J. Differential Equations 239 (2020), 125–147.

J. Lee and N.T. Nguyen, Gromov–Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation, Commun. Pure Appl. Anal. 20 (2021), 1263–1296.

L. Pires and R.A. Samprogna, Rate of convergence of global attractors for some perturbed reaction-diffusion equations under smooth perturbations of the domain, Topol. Methods Nonlinear Anal. 58 (2021), 441–452.

R. Willie, A semilinear reaction-diffusion system of equations and large diffusion, J. Dynam. Differential Equations 16 (2004), 35–63.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-06-16

How to Cite

1.
LEE, Jihoon, NGUYEN, Ngocthach and PIRES, Leonardo. Gromov-Hausdorff stability for semilinear systems with large diffusion. Topological Methods in Nonlinear Analysis. Online. 16 June 2024. Vol. 63, no. 2, pp. 645 - 659. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2023.034.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 2 (June 2024)

Section

Articles

License

Copyright (c) 2024 Jihoon Lee, Ngocthach Nguyen, Leonardo Pires

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop