Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fixed point for mappings of asymptotically nonexpansive type in Lebesgue spaces with variable exponents
  • Home
  • /
  • Fixed point for mappings of asymptotically nonexpansive type in Lebesgue spaces with variable exponents
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

Fixed point for mappings of asymptotically nonexpansive type in Lebesgue spaces with variable exponents

Authors

  • Tomas Domínguez Benavides https://orcid.org/0000-0003-0281-3745

DOI:

https://doi.org/10.12775/TMNA.2023.044

Keywords

Variable Lebesgue spaces, fixed point property, nonexpansive mappings, mappings of asymptotically nonexpansive type, modular spaces

Abstract

Assume that $(\Omega, \Sigma, \mu)$ is a $\sigma$-finite measure space and $p\colon\Omega\to [1,\infty]$ a variable exponent. In the case of a purely atomic measure, we prove that the w-FPP for mappings of asymptotically nonexpansive type in the Nakano space $\ell^{p(k)}$, where $p(k)$ is a sequence in $[1,\infty]$, is equivalent to several geometric properties of the space, as weak normal structure, the w-FPP for nonexpansive mappings and the impossibility of containing isometrically $L^1([0,1])$. In the case of an arbitrary $\sigma$-finite measure, we prove that this characterization also holds for pointwise eventually nonexpansive mappings. To determine if the w-FPP for nonexpansive mappings and for mappings of asymptotically nonexpansive type are equivalent is a long standing open question \cite{Ki3}. According to our results, this is the case, at least, for pointwise eventually nonexpansive mappings in Lebesgue spaces with variable exponents.

References

D.E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), no. 3, 423–424.

J. M. Ayerbe, T. Domı́nguez Benavides and G. López Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory: Advances and Applications, vol. 99, Birkäuser, Basel, 1997.

A. Barrera-Cuevas and M. Japón, New families of nonreflexive Banach spaces with the fixed point property, J. Math. Anal. Appl. 425 (2015), no. 1, 349–363.

F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Nat. Acad. Sci. USA 43 (1965), 1272–1276.

F.E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA 54 (1965), 1041–1044.

R.E. Bruck, A common fixed point theorem for a commuting family of nonexpansive mappings, Pacific J. Math. 53 (1974), 59–71.

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Birkhäuser, Basel, 2013.

T. Domı́nguez Benavides and M. Japón, Fixed point properties and reflexivity in variable Lebesgue spaces, J. Funct. Anal. 280 (2021), no. 6, paper no. 108896.

T. Domı́nguez Benavides and P. Lorenzo, Fixed points for mappings of asymptotically nonexpansive type, Fixed Point Theory 24 (2023), no. 2, 569–582,

T. Domı́nguez Benavides, M.A. Khamsi and S. Samadi, Asymptotically nonexpansive mappings in modular function spaces, J. Math. Anal. Appl. 265 (2002), no. 2, 249–263.

K. Goebel, On the structure of minimal invariant sets for nonexpansive mappings, Ann. Univ. Mariae Curie-Sklodowska Sect. A 29 (1975), 73–77.

K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171–174.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.

D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nach. 30 (1965), 251–258.

L.A. Karlovitz, Existence of fixed points of nonexpansive mappings in a space without normal structure, Pacific J. Math. 66 (1976), 153–159.

W. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72, 1004–6.

W.A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339–346.

W.A. Kirk, The fixed point property and mappings which are eventually nonexpansive, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math., vol. 178, Dekker, New York, 1996, pp. 141–147.

W.A. Kirk, Remarks on nonexpansive mappings and related asymptotic conditions, J. Nonlinear Convex Anal. 18 (2017), no. 1, 1–15.

W.A. Kirk and B. Sims (eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001.

W.A. Kirk and H. K. Xu, Asymptotic pointwise contractions, Nonlinear Anal. 69 (2008), 4706–4712.

G. Li and B. Sims, Fixed point theorems for mappings of asymptotically nonexpansive type, Nonlinear Anal. 50 (2002), 1085–1091.

J. Lukeš, L. Pick and D. Pokorný, On geometric properties of the spaces Lp(x) , Rev. Mat. Complut. 24 (2011), no. 1, 115–130.

R. Malik and S. Rajesh, Fixed points of asymptotically nonexpansive type mappings, Adv. Oper. Theory 8 (2023), no. 9, DOI: 10.1007/s43036-022-00235-9.

J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 (1959), 591–597.

H. Nakano, Modulared Semi-ordered Linear Spaces, Maruzen Co., Tokyo, 1950.

W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3, (1931), 200–212.

M. Radhakrishnan and S. Rajesh, Existence of fixed points for pointwise eventually asymptotically nonexpansive mappings, Appl. Gen. Topol. 20, no. 1 (2019), 119–133.

S. Rajesh, On existence of fixed points for pointwise eventually nonexpansive mappings, J. Fixed Point Theory Appl. 19 (2017), no. 3, 2177–2184.

M. Ru̇žička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000.

H.K. Xu, Existence and convergence of fixed points for mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), 1139–1146.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-10

How to Cite

1.
BENAVIDES, Tomas Domínguez. Fixed point for mappings of asymptotically nonexpansive type in Lebesgue spaces with variable exponents. Topological Methods in Nonlinear Analysis. Online. 10 March 2024. Vol. 63, no. 1, pp. 23 - 38. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2023.044.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Tomas Domínguez Benavides

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop