Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fixed points of G-monotone mappings in metric and modular spaces
  • Home
  • /
  • Fixed points of G-monotone mappings in metric and modular spaces
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

Fixed points of G-monotone mappings in metric and modular spaces

Authors

  • Dau Hong Quan https://orcid.org/0000-0003-0219-4657
  • Andrzej Wiśnicki https://orcid.org/0000-0002-0361-1128

DOI:

https://doi.org/10.12775/TMNA.2024.003

Keywords

Monotone mapping, nonexpansive mapping, fixed point

Abstract

Let $C$ be a bounded, closed and convex subset of a reflexive metric space with a digraph $G$ such that $G$-intervals along walks are closed and convex. In the main theorem we show that if $T\colon C\rightarrow C$ is a monotone $G$-nonexpansive mapping and there exists $c\in C$ such that $Tc\in [c,\rightarrow )_{G}$, then $T$ has a fixed point provided for each $a\in C$, $[a,a]_{G}$ has the fixed point property for nonexpansive mappings. In particular, it gives an essential generalization of the Dehaish-Khamsi theorem concerning partial orders in complete uniformly convex hyperbolic metric spaces. Some counterparts of this result for modular spaces, and for commutative families of mappings are given too.

References

A.N. Abdou and M.A. Khamsi, Fixed point theorems in modular vector spaces, J. Nonlinear Sci. Appl. 10 (2017), 4046–4057.

M.R. Alfuraidan, Fixed points of monotone nonexpansive mappings with a graph, Fixed Point Theory Appl. 49 (2015), 6 pp.

J. Bang-Jensen and G. Gutin, Digraphs Theory, Algorithms and Applications, Springer, London, 2009.

B.A. Bin Dehaish and M.A. Khamsi, Browder and Göhde fixed point theorem for monotone nonexpansive mappings, Fixed Point Theory Appl. 20 (2016), 1–9.

R. Diestel, Graph Theory, Springer, Berlin, 2017.

T. Domı́nguez-Benavides, M.A. Khamsi and S. Samadi, Asymptotically regular mappings in modular function spaces, Sci. Math. Jpn. 53 (2001), 295–304.

R. Espı́nola and A. Wiśnicki, The Knaster–Tarski theorem versus monotone nonexpansive mappings, Bull. Pol. Acad. Sci. Math. 66 (2018), 1–7.

J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 136 (2008), 1359–1373.

M. Kell, Uniformly convex metric spaces, Anal. Geom. Metr. Spaces 2 (2014), 359–380.

M.A. Khamsi, On metric spaces with uniform normal structure, Proc. Amer. Math. Soc. 106 (1989), 723–726.

M.A. Khamsi, Uniform noncompact convexity, fixed point property in modular spaces, Math. Japonica 41 (1994), 1–6.

M.A. Khamsi and A.R. Khan, Inequalities in metric spaces with applications, Nonlinear Anal. 74 (2011), 4036–4045.

M.A. Khamsi and W.M. Kozlowski, Fixed Point Theory in Modular Function Spaces, with a foreword by W.A. Kirk, Birkhauser/Springer, Cham, 2015.

W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.

K. Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), 75–163.

J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin, 1983.

J.J. Nieto and R. Rodrı́guez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 3 (2005), 223–239.

D.H. Quan and A. Wiśnicki, Fixed point theorems in Banach spaces endowed with a digraph (to appear).

A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 5 (2004), 1435–1443.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
QUAN, Dau Hong and WIŚNICKI, Andrzej. Fixed points of G-monotone mappings in metric and modular spaces. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 1, pp. 167 - 184. [Accessed 9 July 2025]. DOI 10.12775/TMNA.2024.003.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Dau Hong Quan, Andrzej Wiśnicki

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop