Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On infinite systems of nonlinear integral equations in two variables in Banach Space $BC(\mathbb{R_+}\times \mathbb{R_+},c_0$)
  • Home
  • /
  • On infinite systems of nonlinear integral equations in two variables in Banach Space $BC(\mathbb{R_+}\times \mathbb{R_+},c_0$)
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

On infinite systems of nonlinear integral equations in two variables in Banach Space $BC(\mathbb{R_+}\times \mathbb{R_+},c_0$)

Authors

  • Asif Hussain Jan https://orcid.org/0000-0001-9655-227X
  • Tanweer Jalal https://orcid.org/0000-0003-0676-1356

DOI:

https://doi.org/10.12775/TMNA.2023.050

Keywords

Function spaces, measures of noncompactness, infinite system of integral equations, fixed point theorem

Abstract

In this paper, the solvability of an infinite system of integral equations of the Volterra-Hammerstein type in Banach space $BC(\mathbb{R_+}\times \mathbb{R_+},c_0$) is examined. Technique associated with the measure of noncompactness plays the most important role in adopted analysis and authors present an example to validate the applicability of the result.

References

R.P. Agarwal, M. Benchohra and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109 (2010), no. 3, 973–1033.

R.P. Agarwal and D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, 2004.

A. Aghajani, M. Mursaleen and A.S. Haghighi, Fixed point theorems for Meir–Keeler condensing operators via measure of noncompactness, Acta Math. Sci. 35 (2015), 552–566.

A. Aghajani and E. Pourhadi, Application of measure of noncompactness to `1 solvability of infinite systems of second order differential equations, Bul. Bel. Math. Soc. 22 (2015), no. 1, 105–118.

J.Banaś and A. Chlebowicz, On solutions of an infinite system of nonlinear integral equations on the real half-axis, Banach J. Math. Anal. 13 (2019), no. 4, 944–968.

J. Banaś, A. Chlebowicz and W. Woś, On measures of noncompactness in the space of functions defined on the half-axis with values in a Banach space, J. Math. Anal. Appl. 489 (2020), no. 2, 124187.

J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, vol. 60, New York, 1980.

J. Banaś and M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comp. Appl. Math. 137 (2001), no. 2, 363–375.

J.Banaś and M. Mursaleen, Sequence Spaces and Measures of Noncompactness with Applications to Differential and Integral Equations, New Delhi, Springer, 2014.

J. Banaś, M. Mursaleen and S.M. Rizvi, Existence of solutions to a boundary-value problem for an infinite system of differential equations, Electron. J. Differential Equations 262 (2017), 1–12.

J. Banaś and B. Rzepka, On solutions of infinite system of integral equations of Hammerstein type, J. Nonlinear Convex. Anal. 18 (2017), no. 2, 261–278.

J. Banaś and W. Woś, Solvability of an infinite system of integral equations on the real half-axis, Adv. Nonlinear Anal. 10 (2021), 202–216.

G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mate. della Uni. Pad. 24 (19550, 84–92.

A.H. Jan and T. Jalal, On solvability of Volterra–Hammerstein integral equations in two variables coordinatewise converging at infinity, Oper. Matrices 17 (2023), no. 1, 187–211.

T. Jalal and A.H. Jan, Measures of noncompactness in the Banach space BC(R+ × R+ , E) and its application to infinite system of integral equation in two variables, Filomat 37 (2023), no. 12, 3791–3817.

K. Kuratowski, Sur les espaces complets, Fund. Math. 1 (1930), no. 15, 301–309.

I.A. Malik and T. Jalal, Infinite system of integral equations in two variables of Hammerstein type in c0 and `1 spaces, Filomat 33 (2019), no. 11, 3441–3455.

I.A. Malik and T. Jalal, Boundary value problem for an infinite system of second order differential equations in `p spaces, Math. Bohem. 1459 (2019), no. 2, 1–14.

I.A. Malik and T. Jalal, Existence of solution for system of differential equations in co and `1 spaces, Afrika Mat. 31 (2020), no. 7, 1129–1143.

I.A. Malik and T. Jalal, Solvability of Hammerstein integral equation in Banach space `p , Palestine J. Math. 9 (2023), no. 12, 1–10.

A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), no. 2, 326–329.

R.D.Nussbaum, A generalization of the Ascoli theorem and an application to functional differential equations, J. Math. Anal. Appl. 35 (1971), 600–610.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
JAN, Asif Hussain and JALAL, Tanweer. On infinite systems of nonlinear integral equations in two variables in Banach Space $BC(\mathbb{R_+}\times \mathbb{R_+},c_0$). Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 1, pp. 263 - 284. [Accessed 28 December 2025]. DOI 10.12775/TMNA.2023.050.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Asif Hussain Jan, Tanweer Jalal

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop