Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fixed point results for convex orbital nonexpansive type mappings
  • Home
  • /
  • Fixed point results for convex orbital nonexpansive type mappings
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

Fixed point results for convex orbital nonexpansive type mappings

Authors

  • Enrique Llorens-Fuster

DOI:

https://doi.org/10.12775/TMNA.2023.047

Keywords

Fixed point, nonexpansive mapping, normal structure

Abstract

We define some classes of generalized nonexpansive mappings under assumptions concerning the convex combinations of two consecutive points in their orbits. For these mappings, in the setting of Banach spaces that enjoy normal structure, we provide several fixed point results.

References

L.P. Belluce and W.A. Kirk, Fixed-point theorems for certain classes of nonexpansive mappings, Proc. Amer. Math. Soc. 20 (1969), 141–146.

T. Domı́nguez Benavides and E. Llorens Fuster, Iterated noexpansive mappings, J. Fixed Point Theory Appl. 20 (2018), no. 104, DOI: 10.1007/s11784-018-0579-5.

J. Garcı́a-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), 185–195.

K. Goebel and W.A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983), 115–123.

J. Górnicki and R.K. Bisht Around averaged mappings. J. Fixed Point Theory Appl. 23 (2021), paper no. 48, 12 pp.

T.L. Hicks and B.E. Rhoades, A Banach type fixed-point theorem, Math. Japonica 24 (1979), 327–330.

W.A. Kirk, On mappings with diminishing orbital diameters, J. London Math. Soc. 44 (1969), 107–111.

W.A. Kirk and Shahzad, Normal structure and orbital fixed point conditions, J. Math. Anal. Appl. 463 (2018), 461–476.

W.A. Kirk and Shahzad, Orbital fixed point conditions in geodesic spaces, Fixed Point Theory 21 (2020), 221–38.

S. Kumar, Some fixed point theorems for iterated contraction maps, J. Appl. Funct. Anal. 10 (2015), no. 1-2, 31–39.

E. Llorens-Fuster, Orbitally nonexpansive mappings, Bull. Aust. Math. Soc. 93 (2016), 497–503.

E. Llorens-Fuster, Partially nonexpansive mappings, Advances in the Theory of Nonlinear Analysis and the Applications 6 (2022), no. 4, 565–573.

E. Llorens-Fuster and E. Moreno-Gálvez, The Fixed Point Theory for some generalized nonexpansive mappings, Abstract Appl. Anal. 2011 (2011), Art. ID 435686.

A. Nicolae, Generalized asymptotic pointwise contractions and nonexpansive mappings involving orbits, Fixed Point Theory Appl. (2010), Art. ID 458265, 19 pp.

A. Petruşel and G. Petruşel, Fixed point results for decreasing convex orbital operators in Hilbert spaces, J. Fixed Point Theory Appl. 23 (2021), no. 3, paper no3̇5, 10 pp.

A. Petruşel and I.A. Rus, Graphic contraction principle and applications, Mathematical Analysis and Applications, Springer Optim. Appl., vol. 154, Springer, Cham, 2019, 411–432.

O. Popescu, Fixed-point results for convex orbital operators, Demonstr. Math. 56 (2023), no. 1, dema–2022–0184.

W.C. Rheinboldt, A unified convergence theory for a class of iterative processes, SIAM J. Numer. Anal. 5 (1968), 42–63.

I.A. Rus, The method of successive approximations, Rev. Roumaine Math. Pures Appl. 17 (1972), 1433–1437.

P.V. Subrahmanyam, Remarks on some fixed-point theorems related to Banach’s contraction principle, J. Mathematical and Physical Sci. 8 (1974), 445–457; errata: 9 (1975), 195.

T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
LLORENS-FUSTER, Enrique. Fixed point results for convex orbital nonexpansive type mappings. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 1, pp. 79 - 97. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2023.047.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Enrique Llorens-Fuster

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop