Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of positive solutions in the space of Hölder functions for a class of nonlinear fractional differential equations with integral boundary conditions
  • Home
  • /
  • Existence of positive solutions in the space of Hölder functions for a class of nonlinear fractional differential equations with integral boundary conditions
  1. Home /
  2. Archives /
  3. Vol 63, No 1 (March 2024) /
  4. Articles

Existence of positive solutions in the space of Hölder functions for a class of nonlinear fractional differential equations with integral boundary conditions

Authors

  • Josefa Caballero https://orcid.org/0000-0001-8842-426X
  • Jackie Harjani https://orcid.org/0000-0002-3154-6773
  • Belén López https://orcid.org/0000-0002-1484-0890
  • Kishin Sadarangani https://orcid.org/0000-0002-7090-0114

DOI:

https://doi.org/10.12775/TMNA.2023.038

Keywords

Fractional differential equation, integral boundary condition, positive solution, Hölder spaces, Schauder fixed point theorem

Abstract

We study the existence of positive solutions for a fractional differential equation with integral boundary conditions. Our solutions are placed in the space of Hölder functions and the main tools used in the proof of the results are the classical Schauder fixed point theorem and a sufficient condition about the relative compactness in Hölder spaces. Moreover, some examples are shown illustrating the results.

References

H. Abbas, M. Belmekki and A. Cabada, Positive solutions for fractional boundary value problems with integral boundary conditions and parameter dependece, Comp. Appl. Math. 40 (2021), article no. 158.

C. Bai, Impulsive periodic boundary value problems for fractional differential equation involving Riemann–Liouville sequential fractional derivative, J. Math. Anal. Appl. 384 (2011), 211–231.

Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equations, J. Math. Anal. Appl. 311 (2005), 495–505.

J. Banaś and R. Nalepa, On the space of functions with growths tempered by a modulus of continuity and its applications, J. Funct. Spaces Appl. (2013), DOI: 10.1155/2013/820437.

A. Cabada and G. Wang, Positive solutions of nonlinear fractional differential equations with integral-boundary value conditions, J. Math. Anal. Appl. 389 (2012), 403–411.

J. Caballero, M.A. Darwish and K. Sadarangani, Solvability of a quadractic integral equation of Fredholm type in Hölder spaces, Electron. J. Differential Equations 31 (2014), 1–10.

M.A. Darwish and S.K. Ntouyas, On initial and boudary value problems for fractional order mixed type functional differential inclusions, Comput. Math. Appl. 59 (2010), 1253–1265.

M. Feng, X. Zhang and W. Ge, New existence results for higher-order nonlinear fractional differential equations with integral boundary conditions, Bound. Value Probl. 2011 (2011), article no. 720720.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science BV, Amsterdam, 2006.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

H.A.H. Salem, Fractional order boundary value problem with integral boundary conditions involving Pettis integral, Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011), no. 2, 661–672.

S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.

M. Stojanovic and R. Gorenflo, Nonlinear tow-term time fractional diffusion-wave problem, Nonlinear Anal. 11 (2010), 3512–3523.

Y. Zhou and F. Jiao, Nonlocal Cauchy problem for fractional evolution equations, Nonlinear Anal. 11 (2010), 4465–4475.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
CABALLERO, Josefa, HARJANI, Jackie, LÓPEZ, Belén and SADARANGANI, Kishin. Existence of positive solutions in the space of Hölder functions for a class of nonlinear fractional differential equations with integral boundary conditions. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 1, pp. 185 - 196. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2023.038.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 1 (March 2024)

Section

Articles

License

Copyright (c) 2024 Josefa Caballero, Jackie Harjani, Belén López, Kishin Sadarangani

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop