Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Sectional category of maps related to finite spaces
  • Home
  • /
  • Sectional category of maps related to finite spaces
  1. Home /
  2. Archives /
  3. Vol 63, No 2 (June 2024) /
  4. Articles

Sectional category of maps related to finite spaces

Authors

  • Kohei Tanaka

DOI:

https://doi.org/10.12775/TMNA.2023.029

Keywords

Sectional category, Lusternik-Schnirelmann category, poset, finite space, fixed point

Abstract

In this study, we compute some examples of sectional category secat$(f)$ and sectional number sec$(f) for continuous maps $f$ related to finite spaces. Moreover, we introduce an invariant secat$_k(f)$ for a map $f$ between finite spaces using the $k$-th barycentric subdivision and show the equality secat$_k(f)=$ secat$(\mathcal{B}(f))$ for sufficiently large $k$, where $\mathcal{B}(f)$ is the induced map on the associated polyhedra.

References

K. Baclawski and A. Björner, Fixed points in partially ordered sets, Adv. Math. 31 (1979), no. 3, 263–287.

J.A. Barmak, Algebraic Topology of Finite Topological Spaces and Applications, Lecture Notes in Mathematics, vol. 2032, Springer, Heidelberg, 2011.

J.A. Barmak and E.G. Minian, Strong homotopy types, nerves and collapses, Discrete Comput. Geom. 47 (2012), no. 2, 301–328.

P. Bilski, On the inverse limits of T0 -Alexandroff spaces, Glas. Mat. Ser. III 52 (72) (2017), no. 2, 207–219.

M. Cárdenas, R. Flores, A. Quintero and M.T. Villar-Liñán, Covering-based numbers related to the LS-category of finite spaces, arXiv: 2209.14739v1.

E. Clader, Inverse limits of finite topological spaces, Homology Homotopy Appl. 11 (2009), no. 2, 223–227.

E. Clader, Erratum to “Inverse limits of finite topological spaces” [MR2591919], Homology Homotopy Appl. 18 (2016), no. 1, 25–26.

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003, xviii+330 pp.

M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003), no. 2, 211–221.

J. González, Simplicial complexity: piecewise linear motion planning in robotics, New York J. Math. 24 (2018), 279–292.

L. Lusternik and L. Schnirelmann, Méthodes Topologiques dans les Problémes Variationnels, Hermann, Paris, 1934.

M.C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J. 33 (1966), 465–474.

P. Pavešić, A topologist’s view of kinematic maps and manipulation complexity, Topological Complexity and Related Topics (M. Grant, G. Lupton and L. Vandembroucq, eds.), vol. 702, Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 2018, pp. 61–83.

P. Pavešić, Topological complexity of a map, Homology Homotopy Appl. 21 (2019), no. 2, 107–130.

I. Rival, A fixed point theorem for finite partially ordered sets, J. Combinatorial Theory Ser. A 21 (1976), no. 3, 309–318.

A.S. Schwarz, The genus of a fiber space, Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 219–222, (Russian).

E.H. Spanier, Algebraic Topology, Springer–Verlag, New York, (corrected reprint of the 1966 original).

R.E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), 325–340.

F. Takens, The Lusternik–Schnirelman categories of a product space, Compositio Math. 22 (1970), 175-180.

K. Tanaka, A combinatorial description of topological complexity for finite spaces, Algebr. Geom. Topol. 18 (2018), no. 2, 779–796.

K. Tanaka, Lusternik–Schnirelmann category for categories and classifying spaces, Topology Appl. 239 (2018), 65–80.

K. Tanaka, Parametrized topological complexity of poset-stratified spaces, J. Appl. Comput. Topol. 6 (2022), no. 2, 221–246.

M.J. Thibault, Homotopy theory of combinatorial categories, Ph.D.Thesis, The University of Chicago, 2013, 109 pp.

C.A.I. Zapata and J. González, Sectional category and the fixed point property, Topol. Methods Nonlinear Anal. 56 (2020), no. 2, 559–578.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
TANAKA, Kohei. Sectional category of maps related to finite spaces. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 2, pp. 537 - 557. [Accessed 13 December 2025]. DOI 10.12775/TMNA.2023.029.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 2 (June 2024)

Section

Articles

License

Copyright (c) 2024 Kohei Tanaka

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop