Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the critical exponents for a fractional diffusion-wave equation with a nonlinear memory term in a bounded domain
  • Home
  • /
  • On the critical exponents for a fractional diffusion-wave equation with a nonlinear memory term in a bounded domain
  1. Home /
  2. Archives /
  3. Vol 63, No 2 (June 2024) /
  4. Articles

On the critical exponents for a fractional diffusion-wave equation with a nonlinear memory term in a bounded domain

Authors

  • Quan-Guo Zhang

DOI:

https://doi.org/10.12775/TMNA.2023.024

Keywords

Fractional diffusion-wave equation, blow-up, global existence, nonlinear memory

Abstract

In this paper, we prove sharp blow-up and global existence results for a time fractional diffusion-wave equation with a nonlinear memory term in a bounded domain, where the fractional derivative in time is taken in the sense of the Caputo type. Moreover, we also give a result for nonexistence of global solutions to a wave equation with a nonlinear memory term in a bounded domain. The proof of blow-up results is based on the eigenfunction method and the asymptotic properties of solutions for an ordinary fractional differential inequality.

References

M. Allen, L. Caffarelli and A. Vasseur, A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal. 221 (2016), 603–630.

E. Alvarez, C.G. Gal, V. Keyantuo and M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal. 181 (2019), 24–61.

B. Andrade and T.S. Cruz, Regularity theory for a nonlinear fractional reactiondiffusion equation, Nonlinear Anal. 195 (2020), Article 111705.

S.A. Asogwa, J.B. Mijena and E. Nane, Blow-up results for space-time fractional stochastic partial differential equations, Potential Anal. 53 (2020), 357–386.

T. Cazenave, F. Dickstein and F.B. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal. 68 (2008), 862–874.

W. Chen, Interplay effcts on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms, Nonlinear Anal. 202 (2021), Article 112160.

W. Chen and A. Palmieri, Blow-up Result for a Semilinear Wave Equation with a Nonlinear Memory Term, Springer INdAM Series, vol. 43, 2020, p. 20.

M. D’Abbicco, The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal. 95 (2014), 130–145.

A.Z. Fino, Critical exponent for damped wave equations with nonlinear memory, Nonlinear Anal. 74 (2011), 5495–5505.

A.Z. Fino and M. Jazar, Blow-up solutions of second-order differential inequalities with a nonlinear memory term, Nonlinear Anal. 75 (2012), 3122–3129.

G.B. Folland, Real Analysis: Modern Techniques and Their Applications, Wiley, New York, 1999.

Y. Giga and T. Namba, Well-posedness of Hamilton–Jacobi equations with Caputo’s time fractional derivative, Commun. Partial Differ. Equ. 42 (2017), 1088–1120.

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer–Verlag, Berlin, 1998.

F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28 (1979), 235–268.

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305–330.

S. Kerbal, On a recent result of Cazenave, Dickstein and Weissler, Appl. Math. Lett. 24 (2011), 1693-1697.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, Elsevier Science B.V., Amsterdam, 2006.

I. Kim, K.H. Kim and S. Lim, An Lq (Lp )-theory for the time fractional evolution equations with variable coefficients, Adv. Math. 306 (2017), 123–176.

M. Kirane, Y. Laskri and N.E. Tatar, Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives, J. Math. Anal. Appl. 312 (2005), 488–501.

N.A Lai J.L. Liu and J.L Zhao, Blow up for Initial-Boundary Value Problem of Wave Equation with a Nonlinear Memory in 1-D, Chin. Ann. Math. Ser. B 38 (2017), no. 3, 827–838.

L. Li, J.G. Liu and L. Wang, Cauchy problems for Keller–Segel type time-space fractional diffusion equation, J. Differential Equations 265 (2018), 1044–1096.

Y. Li and Q. Zhang, Blow-up and global existence of solutions for a time fractional diffusion equation, Fract. Calc. Appl. Anal. 21 (2018), 1619–1640.

R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), 1–77.

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

A.V. Pskhu, On the real zeros of functions of Mittag–Leffler type, Math. Notes 77 (2005), 546–552.

P. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser, Basel, 2007.

W.R. Schneider and W. Wyss, Fractional diffusion and wave equations, J. Math. Phys. 30 (1989), 134–144.

N.H. Tuan, V.V. Au and R. Xu, Semilinear Caputo time-fractional pseudo-parabolic equations, Commun. Pure Appl. Anal. 20 (2021), 583–621.

V. Vergara and R. Zacher, Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations, J. Evol. Equ. 17 (2017), 599–626.

R.N. Wang, D.H. Chen and T.J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations 252 (2012), 202–235.

J.R. Wang, Y. Zhou and M. Fec̆kan, Abstract Cauchy problem for fractional differential equations, Nonlinear Dyn. 71 (2013), 685–700.

B.T. Yordanov and Q.S. Zhang, Finite time blow-up for critical wave equations in high dimensions, J. Funct. Anal. 231 (2006), 361–374.

R. Zacher, A De Giorgi–Nash type theorem for time fractional diffusion equations, Math. Ann. 356 (2013), 99–146.

Q.G. Zhang and Y.N. Li, The critical exponent for a time fractional diffusion equation with nonlinear memory, Math. Methods Appl. Sci. 41 (2018), 6443–6456.

Q.G. Zhang and Y.N. Li, The critical exponents for a time fractional diffusion equation with nonlinear memory in a bounded domain, Appl. Math. Lett. 92 (2019), 1–7.

Q.G. Zhang and Y.N. Li, Global well-posedness and blow-up solutions of the Cauchy problem for a time-fractional superdiffusion equation, J. Evol. Equ. 19 (2019), 271–303.

Q.G. Zhang and H.R. Sun, The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation, Topol. Methods Nonlinear Anal. 46 (2015), 69–92.

Y. Zhou and J.W. He, Well-posedness and regularity for fractional damped wave equations, Monatsh. Math. 194 (2021), 1–34.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2024-03-03

How to Cite

1.
ZHANG, Quan-Guo. On the critical exponents for a fractional diffusion-wave equation with a nonlinear memory term in a bounded domain. Topological Methods in Nonlinear Analysis. Online. 3 March 2024. Vol. 63, no. 2, pp. 455 - 480. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2023.024.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 2 (June 2024)

Section

Articles

License

Copyright (c) 2024 Quan-Guo Zhang

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop