Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the operator of center of distances between the spaces of closed subsets of the real line
  • Home
  • /
  • On the operator of center of distances between the spaces of closed subsets of the real line
  1. Home /
  2. Archives /
  3. Vol 63, No 2 (June 2024) /
  4. Articles

On the operator of center of distances between the spaces of closed subsets of the real line

Authors

  • Artur Bartoszewicz https://orcid.org/0000-0003-3055-4728
  • Małgorzata Filipczak https://orcid.org/0000-0002-1137-9648
  • Grażyna Horbaczewska https://orcid.org/0000-0002-2883-0941
  • Sebastian Lindner https://orcid.org/0000-0002-6767-6174
  • Franciszek Prus-Wiśniowski https://orcid.org/0000-0002-0275-6122

DOI:

https://doi.org/10.12775/TMNA.2023.023

Keywords

Center of distances, Hausdorff metric, semicontinuity, orbit, Cantorval

Abstract

We study properties of an operator $S$ which assigns to compact subsets of $[0,1]$ their centers of distances. We consider its continuity points and its upper semicontinuity points as well as orbits and fixed points of this operator. We also compute centers of distances of some classic sets. Using properties of operator $S$ we show that the family of achievement sets is of the first category in the space of compact subsets of $[0,1]$.

References

M.F. Barnsley, Fractals Everywhere, Academic Press, 2nd edition, 1993.

T. Banakh, A. Bartoszewicz, M. Filipczak and E. Szymonik, Topological and measure properties of some self-similar sets, Topol. Methods Nonlinear Anal. 46 (2015), 1013–1028.

M. Banakiewicz, The center of distances of central Cantor sets, Results Math. 78 (2023), 234.

M. Banakiewicz, A. Bartoszewicz, M. Filipczak and F. Prus-Wiśniowski, Center of distances and central Canor sets, Results Math. 77 (2022), article number 196.

A. Bartoszewicz, M. Filipczak and F.Prus-Wiśniowski, Topological and algebraic aspects of subsums of series, Traditional and Present-day Topics in Real Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Łódź, 2013, pp. 345–366.

A. Bartoszewicz, S. Głąb and J. Marchwicki, Recovering purely atomic finite measure from its range, J. Math. Anal. Appl. 467 (2018), no. 2, 825–841.

A. Bartoszewicz, S. Głąb, M. Filipczak, F. Prus-Wiśniowski and J. Swaczyna, On generating regular Cantorvals connected with geometric Cantor sets, Chaos Solitons Fractals 114, (2018), 468–473.

W. Bielas, S. Plewik and M. Walczyńska, On the center of distances, Eur. J. Math. 4 (2018), 687–698.

K. Drakakis, A review of the available construction methods for Golomb rulers, Adv. Math. Commun. 3 (2009), no. 3, 235–250.

J.A. Guthrie and J.E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math. 55 (1988), no. 2, 323–327.

R. Jones, Achievement sets of sequences, Amer. Math. Monthly 118 (2011), no. 6, 508–521.

M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, second ed., Birkhäuser Verlag, Basel, 2009.

M. Kula and P. Nowakowski, Achievement sets of series in R2 (2023), arXiv: 2312.08155[math.CA].

K. Kuratowski, Topology, vol. II, Academic Press, 1968.

P. Mendes and F. Oliveira, On the topological structure of the arithmetic sum of two Cantor sets, Nonlinearity 7 (1994), 329–343.

Z. Nitecki, Cantorvals and Subsum Sets of Null Sequences, Amer. Math. Monthly 122 (2015), no. 9, 862–870.

J.E. Nymann and R.A. Sáenz, On the paper of Guthrie and Nymann on subsums of infinite series, Colloq. Math. 83 (2000), 1–4.

C.A. Rogers, Hausdorff Measures, Cambridge University Press, 1970.

B. Santiago, The semicontinuity lemma (2012), preprint: http://www.professores.uff.br/brunosantiago/wp-con tent/uploads/sites/17/2017/07/01.pd.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-12-31

How to Cite

1.
BARTOSZEWICZ, Artur, FILIPCZAK, Małgorzata, HORBACZEWSKA, Grażyna, LINDNER, Sebastian and PRUS-WIŚNIOWSKI, Franciszek. On the operator of center of distances between the spaces of closed subsets of the real line. Topological Methods in Nonlinear Analysis. Online. 31 December 2023. Vol. 63, no. 2, pp. 413 - 427. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2023.023.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 63, No 2 (June 2024)

Section

Articles

License

Copyright (c) 2023 Artur Bartoszewicz, Małgorzata Filipczak, Grażyna Horbaczewska, Sebastian Lindner, Franciszek Prus-Wiśniowski

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop