Exponential attractor for the Cahn-Hilliard-Oono equation in R^N
DOI:
https://doi.org/10.12775/TMNA.2023.018Keywords
Fractal dimension, initial value problems for higher order parabolic equations, semilinear parabolic equations, exponential attractorsAbstract
We consider the Cahn-Hilliard-Oono equation in the whole of $\mathbb{R}^N$, $N\leq 3$. We prove the existence of an exponential attractor in $H^1\big(\mathbb{R}^N\big)$, which contains a global attractor. We also estimate from above fractal dimension of the attractors.References
W. Arendt and C. Batty, Exponential stability of a diffusion equation with absorption, Differ. Int. Equ. 6 (1993), 1009–1024.
J.M. Arrieta, J.W. Cholewa, T. Dlotko and A. Rodrı́guez-Bernal, Linear parabolic equations in locally uniform spaces, Math. Mod. Meth. Appl. Sci. 14 (2004), 253–294.
D. Blömker, S. Maier-Paape and T. Wanner, Spinoidal decomposition for the Cahn–Hilliard–Cook equation, Comm. Math. Phys. 223 (2001), 553–582.
D. Blömker, S. Maier-Paape and T. Wanner, Second phase spinoidal decomposition for the Cahn–Hilliard–Cook equation, Trans. Amer. Math. Soc. 360 (2008), 449–489.
A. Bonfoh, Finite-dimensional attactor for the viscous Cahn–Hilliard equation in an unbounded domain, Quarterly Appl. Math. 65 (2006), 93–104.
J. Bricmont, A. Kupiainen and J. Taskinen, Stability of Cahn–Hilliard fronts, Comm. Pure Appl. Math. 52 (1999), 839–871.
L.A. Caffarelli and N.E. Muler, An L∞ bound for solutions of the Cahn–Hilliard equation, Arch. Rational Mech. Anal. 133 (1995), 129–144.
J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system – I. Interfacial free energy, J. Chem. Phys. 28 (1958), 258–267.
A.N. Carvalho and T. Dlotko, Dynamics of the viscous Cahn–Hilliard equation, J. Math. Anal. Appl. 344 (2008), 703–725.
J.W. Cholewa and R. Czaja, On fractal dimension of global and exponential attractors for dissipative higher order parabolic problems in RN with general potential, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, Springer, 2021, pp. 293–314.
J.W. Cholewa and T. Dlotko, Global attractor for the Cahn–Hilliard system, Bull. Austral. Math. Soc. 49 (1994), 277–293.
J.W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, Cambridge University Press, Cambridge, 2000.
J.W. Cholewa and A. Rodrı́guez-Bernal, Linear and semilinear higher order parabolic equations in RN , Nonlinear Anal. 75 (2012), 194–210.
J.W. Cholewa and A. Rodrı́guez-Bernal, On the Cahn–Hilliard equation in H 1 (RN ), J. Differential Equations 253 (2012), 3678–3726.
J.W. Cholewa and A. Rodrı́guez-Bernal, A note on the Cahn–Hilliard equation in H 1 (RN ) involving critical exponent, Math. Bohem. 139 (2014), 269–283.
J.W. Cholewa and A. Rodrı́guez-Bernal, Linear higher order parabolic problems in locally uniform Lebesgue’s spaces, J. Math. Anal. Appl. 449 (2017), 1–45.
I. Chueshov, Dynamics of Quasi-Stable Dissipative Systems, Springer, Heidelberg, 2015.
I. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of the American Mathematical Society, vol. 195 (912), AMS, Providence, RI, 2008.
R. Czaja and M. Efendiev, A note on attractors with finite fractal dimension, Bull. London Math. Soc. 40 (2008), 651–658.
E. Davoli, L. Scarpa and L. Trussardi, Local asymptotics for nonlocal convective Cahn–Hilliard equations with W 1,1 kernel and singular potential, J. Differential Equations 289 (2021), 35–58.
E. Davoli, L. Scarpa and L. Trussardi, Nonlocal-to-local convergence of Cahn–Hilliard equations: Neumann boundary conditions and viscosity terms, Arch. Ration. Mech. Anal. 239 (2021), 117–149.
T. Dlotko, M. Kania and C. Sun, Analysis of the viscous Cahn–Hilliard equation in RN , J. Differential Equations 252 (2012), 2771–2791.
L. Duan, S. Liu and H. Zhao, A note on the optimal temporal decay estimates of solutions to the Cahn–Hilliard equation, J. Math. Anal. Appl. 372 (2010), 666–678.
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley & Sons, Ltd., Chichester, 1994.
C. Elbar, M. Mason, B. Perthame and J. Skrzeczkowski, From Vlasov equation to degenerate nonlocal Cahn–Hilliard equation, Commun. Math. Phys. 401 (2023), 1033–1057.
C. Elbar and J. Skrzeczkowski, Degenerate Cahn–Hilliard equation: From nonlocal to local, J. Differential Equations 364 (2023), 576–611.
C.M. Elliott and H. Garcke, On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal. 27 (1996), 404–423.
C.M. Elliott and A.M. Stuart, Viscous Cahn–Hilliard equation II. Analysis, J. Differential Equations 128 (1996), 387–414.
D.J. Eyre, Systems of Cahn–Hilliard equations, University of Minnesota, AHPCRC, 1992, Preprint, 92-102.
A. Giorgini, M. Grasselli and A. Miranville, The Cahn–Hilliard–Oono equation with singular potential, Math. Models Methods Appl. Sci. 27 (2017), 2485–2510.
M. Grasselli, G. Schimperna and S. Zelik, Trajectory and smooth attractors for Cahn–Hilliard equations with inertial term, Nonlinearity 23 (2010), 707–737.
J.K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, Rhode Island, 1988.
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer–Verlag, Berlin, 1981.
A.N. Kolmogorov and V.M. Tikhomirov, ε-entropy and ε-capacity of sets in functional spaces, Amer. Math. Soc. Transl. Ser. 2 17 (1961), 277–364.
T. Korvola, A. Kupiainen and J. Taskinen, Anomalous scaling for three-dimensional Cahn–Hilliard fronts, Comm. Pure Appl. Math. 58 (2005), 1077–1115.
De-Sheng Li and Chen-Kui Zhong, Global attractor for the Cahn–Hilliard system with fast growing nonlinearity, J. Differential Equations 149 (1998), 191–210.
J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.
S. Liu, F. Wang and H. Zhao, Global existence and asymptotics of solutions of the Cahn–Hilliard equation, J. Differential Equations 238 (2007), 426–469.
S. Melchionna, H. Ranetbauer, L. Scarpa and L. Trussardi, From nonlocal to local Cahn–Hilliard equation, Adv. Math. Sci. Appl. 28 (2019), 197–211.
A. Miranville, Long time behavior of some models of Cahn–Hilliard equations in deformable continua, Nonlinear Anal. 2 (2001), 273–304.
A. Miranville, Asymptotic behavior of the Cahn–Hilliard–Oono equation, J. Appl. Anal. Comput. 1 (2011), 523–536.
A. Miranville, The Cahn–Hilliard equation and some of its variants, AIMS Math. 2 (2017), 479–544.
A. Miranville, The Cahn–Hilliard equation – Recent Advances and Applications, SIAM, Philadephia, 2019.
A. Miranville and R. Temam, On the Cahn–Hilliard–Oono–Navier–Stokes equations with singular potentials, Appl. Anal. 95 (2016), 2609–2624.
A. Novick-Cohen, On the viscous Cahn–Hilliard equation, Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986), Oxford Sci. Publ., Oxford Univ. Press, New York, 1988, pp. 329–342.
A. Novick-Cohen, The Cahn–Hilliard equation, Handbook of Differential Equations, Evolutionary Equations,vol. 4, 2008, pp. 201–228.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin, 1983.
J. Pennant and S. Zelik, Global well-posedness in uniformly local spaces for the Cahn–Hilliard equations in R3 , Commun. Pure Appl. Anal. 12 (2013), 461–480.
A. Savostianov and S. Zelik, Global well-posedness and attractors for the hyperbolic Cahn–Hilliard–Oono equation in the whole space, Math. Models Methods Appl. Sci. 26 (2016), 1357–1384.
A. Savostianov and S. Zelik, Finite dimensionality of the attractor for the hyperbolic Cahn–Hilliard–Oono equation in R3 , Math. Methods Appl. Sci. 39 (2016), 1254–1267.
G.J.A. Sevink, Rigorous embedding of cell dynamics simulations in the Cahn–Hilliard–Cook framework : imposing stability and isotropy, Phys. Rev. E (3) 91 (2015), no. 5, 053309, 14 pp.
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, New York, 1988.
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher, Berlin, 1978.
H. Ye, Q. Liu and Z. Chen, Global existence of solutions of the time fractional Cahn–Hilliard equation in R3 , J. Evol. Equ. 21 (2021), 2377–2411.
X. Zhao, On the dynamics of a modified Cahn–Hilliard equation with biological applications, Topol. Methods Nonlinear Anal. 50 (2017), 169–183.
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jan W. Cholewa, Radosław Czaja
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Stats
Number of views and downloads: 0
Number of citations: 0