Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple cylindrically symmetric solutions of nonlinear Maxwell equations
  • Home
  • /
  • Multiple cylindrically symmetric solutions of nonlinear Maxwell equations
  1. Home /
  2. Archives /
  3. Vol 62, No 2 (December 2023) /
  4. Articles

Multiple cylindrically symmetric solutions of nonlinear Maxwell equations

Authors

  • Yanyun Wen
  • Peihao Zhao

DOI:

https://doi.org/10.12775/TMNA.2022.062

Keywords

Maxwell equations, variational method, dual fountain theorem, cylindrically symmetric solution

Abstract

In this paper, we study the following nonlinear time-harmonic Maxwell equations \begin{equation}\label{equation 0.1} \nabla\times(\nabla \times E)-\omega^2\varepsilon(x)E =P(x)|E|^{p-2}E+Q(x)|E|^{q-2}E, \end{equation} where $\varepsilon(x)$ is the permittivity of the material, $x\in\mathbb{R}^{3}$, $1< q< {p}/({p-1})< 2< p< 6$, $P(x),Q(x)\in C\left(\mathbb{R}^{3},\mathbb{R}\right)$. Under some special cylindrical symmetric conditions for $\varepsilon(x)$, $P(x)$ and $Q(x)$, we obtain infinite many cylindrically symmetric solutions of \eqref{equation 0.1} by using variational method and fountain theorems without $\tau$-upper semi-continuity.

References

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in threedimensional non smooth domains, Math. Methods. Appl. Sci. 21 (1998), 823–864.

T.D. Aprile and G. Sicliano, Magnetostatic solutions for a semilinear perturbation of the Maxwell equations, Adv. Differential Equations. 16 (2011), 435–466.

A. Azzollini, V. Benci, T.D. Aprile and D. Fortunato, Existence of static solutions of the semilinear Maxwell equations, Ric. Mat. 55 (2006), 283–297.

T. Bartsch, T. Dohnal, M. Plum and W. Reichel, Ground states of a nonlinear curl–curl problem in cylindrically symmetric media, NoDEA Nonlinear Differential Equations Appl. 23 (2016).

V. Benci and D. Fortunato, Towards a unifield theory for classical electrodynamics, Arch. Ration. Mech. Anal. 173 (2004), 379–414.

T. Bartsch and J. Mederski, Nonlinear time-harmonic Maxwell equations in an anisotropic bounded medium, J. Funct. Anal. 272 (2017), 4304–4333.

F. Bernini and B. Bieganowski, Generalized linking-type theorem with applications to strongly indefinite problems with sign-changing nonlinearities, Calc. Var. Partial Differential Equations 61 (2022), Art. 182.

B. Bieganowski, Solutions to a nonlinear Maxwell equation with two competing nonlinearities in R3 , Bulletin Polish Acad. Sci. Math. 69 (2021), 37–60.

Y.H. Ding and X.J. Dong, Infinitely many solutions of Dirac equations with concave and convex nonlinearities, Z. Angew. Math. Phys. 72 (2021), no. 1, 17 pp.

D.G. de Figueiredo, J.P. Gross and P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Funct. Anal. 199 (2003), 452–467.

M. Gaczkowski, J. Mederski and J. Schino, Multiple solutions to cylindrically symmetric curl-curl problems and related Schrödinger equations with singular potentials, preprint, arXiv: 2006.03565.

L.J. Gu and H.S. Zhou, An improved fountain theorem and its application, Adv. Nonlin. Stud. 17 (2017), 727–738.

J. Mederski, Ground states of time-harmonic semilinear Maxwell equations in R3 with vanishning permittivity, Arch. Ration. Mech. Anal. 218 (2015), 825–861.

J. Mederski, The Brezis–Nirenberg problem for the curl-curl operator, J. Funct. Anal. 274 (2018), 1345–1380.

J. Mederski, J. Schino and A. Szulkin, Multiple solutions to a nonlinear curl-curl problem in R3 , Arch. Ration. Mech. Anal. 236 (2020), 253–288.

J. Mederski and A. Szulkin, A Sobolev-type inequality for the curl operator and ground states for the curl-curl equation with critical Sobolev exponent, Arch. Ration. Mech. Anal. 241 (2021), 1815–1842.

P. Monk, Finite Element Methods for Maxwell Equation, Oxford University Press, 2003.

R. Picard, N. Weck and A. Kitsch, Time-harmonic Maxwell equation in the exterior of perfectly conducting, irregular obstacles, Analysis (Munich) 21 (2001), 231–263.

D.D. Qin and X.H. Tang, Time-harmonic Maxwell equations with asymptotically linear polarization, Z. Angew. Math. Phys. 67 (2016), 1–22.

H.J. Ruppen, A generalized min-max theorem for functionals of strongly indefinite sign, Calc. Var. Partial Differential Equations 50 (2014), 231–255.

B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, 2nd edition, Wiley, New York 2007.

C.A. Stuart and H.S. Zhou, Axisymmetric TE-modes in a self-focusing dielectric, SIAM J. Math. Anal. 37 (2005), 218–237.

C.A. Stuart and H.S. Zhou, Existence of guided cylindrical TM-modes in an inhomogeneous self-focusing dielectric, Math. Models Methods Appl. Sci. 20 (2010), 1681–1719.

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal. 257 (2009), 3802–3822.

E. Tonkes, A semilinear elliptic equation with convex and concave nonlinearities, Topol. Methods Nonlinear Anal. 13 (1999), 251–271.

C. Troestler, Bifurcation into spectral gaps for a noncompact semilinear Schrödinger equation with non-convex potential, preprint, arXiv: 1207.1052.

Y.Y. Wen and P.H. Zhao, Infinitely many cylindrically solutions of nonlinear Maxwell equations with concave and convex nonlinearities, Z. Angew. Math. Phys. 73 (2022), Art. 225.

M. Willem, Minimax Theorems. Progress in Nonlinear Differential Equations and Applications, Birkhäuser Boston Inc., Boston, MA, 1996.

X. Zeng, Cylindrically symmetric ground state solutions for curl-curl equations with critical exponent, Z. Angew. Math. Phys. 68 (2017), no. 6, Art. 135.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-11-19

How to Cite

1.
WEN, Yanyun and ZHAO, Peihao. Multiple cylindrically symmetric solutions of nonlinear Maxwell equations. Topological Methods in Nonlinear Analysis. Online. 19 November 2023. Vol. 62, no. 2, pp. 387 - 407. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2022.062.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 2 (December 2023)

Section

Articles

License

Copyright (c) 2023 Yanyun Wen, Peihao Zhao

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop