Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A note on positive solutions of Lichnerowicz equations involving the $\Delta_\lambda$-Laplacian
  • Home
  • /
  • A note on positive solutions of Lichnerowicz equations involving the $\Delta_\lambda$-Laplacian
  1. Home /
  2. Archives /
  3. Vol 62, No 2 (December 2023) /
  4. Articles

A note on positive solutions of Lichnerowicz equations involving the $\Delta_\lambda$-Laplacian

Authors

  • Anh Tuan Duong https://orcid.org/0000-0003-4744-8219
  • Thi Quynh Nguyen https://orcid.org/0000-0003-0956-5852

DOI:

https://doi.org/10.12775/TMNA.2022.076

Keywords

Liouville type theorems, Lichnerowicz equations, parabolic equations, elliptic equations, uniform lower bound of solutions, sub-elliptic operator

Abstract

In this paper, we are concerned with the parabolic Lichnerowicz equation involving the $\Delta_\lambda$-Laplacian $$ v_t-\Delta_\lambda v=v^{-p-2}-v^p,\quad v> 0, \quad \mbox{ in }\mathbb R^N\times\mathbb R, $$ where $p> 0$ and $\Delta_\lambda$ is a sub-elliptic operator of the form $$ \Delta_\lambda=\sum_{i=1}^N\partial_{x_i}\big(\lambda_i^2\partial_{x_i}\big). $$ Under some general assumptions of $\lambda_i$ introduced by A.E. Kogoj and E. Lanconelli in Nonlinear Anal. {\bf 75} (2012), no.\ 12, 4637-4649, we shall prove a uniform lower bound of positive solutions of the equation provided that $p> 0$. Moreover, in the case $p> 1$, we shall show that the equation has only the trivial solution $v=1$. As a consequence, when $v$ is independent of the time variable, we obtain the similar results for the elliptic Lichnerowicz equation involving the $\Delta_\lambda$-Laplacian $$ -\Delta_\lambda u=u^{-p-2}-u^p,\quad u> 0,\quad \mbox{in }\mathbb R^N. $$

References

C.T. Anh and B.K. My, Liouville-type theorems for elliptic inequalities involving the ∆λ -Laplace operator, Complex Var. Elliptic Equ. 61 (2016), no. 7, 1002–1013.

H. Brezis, Comments on two notes by L. Ma and X. Xu [mr2721787; mr2543987], C.R. Math. Acad. Sci. Paris 349 (2011), no. 5–6, 269–271.

Y. Choquet-Bruhat, J. Isenberg and D. Pollack, The Einstein-scalar field constraints on asymptotically Euclidean manifolds, Chinese Ann. Math. Ser. B 27 (2006), no. 1, 31–52.

Y. Choquet-Bruhat, J. Isenberg and D. Pollack, The constraint equations for the Einstein-scalar field system on compact manifolds, Classical Quantum Gravity 24 (2007), no. 4, 809–828.

A. Devinatz, On an inequality of Tosio Kato for degenerate-elliptic operators, J. Functional Analysis 32 (1979), no. 3, 312–335.

N.T. Dung, N.N. Khanh and Q.A. Ngô, Gradient estimates for some f -heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces, Manuscripta Math. 155, (2018), no. 3–4, 471–501.

A.T. Duong, T.H. Giang, P. Le and T.H.A. Vu, Classification results for a sub-elliptic system involving the ∆λ -Laplacian, Math. Methods Appl. Sci. 44 (2021), no. 2, 3615–3629.

A.T. Duong, D. Lan, P.Q. Le and P.T. Nguyen, On the nonexistence of stable solutions of sub-elliptic systems with negative exponents, Complex Var. Elliptic Equ. 64 (2019), no. 12, 2117–2129.

A.T. Duong and N.T. Nguyen, Liouville type theorems for elliptic equations involving Grushin operator and advection, Electron. J. Differential Equations (2017), paper no. 108, 11.

A.T. Duong, V.H. Nguyen and T.Q. Nguyen, Uniform lower bound and Liouville type theorem for fractional Lichnerowicz equations, Bull. Aust. Math. Soc. 104 (2021), no. 3, 484–492.

A.T. Duong and Q.H. Phan, Liouville type theorem for nonlinear elliptic system involving Grushin operator, J. Math. Anal. Appl. 454 (2017), no. 2, 785–801.

B. Franchi and E. Lanconelli, Une métrique associée à une classe d’opérateurs elliptiques dégénérés, Conference on linear partial and pseudodifferential operators (Torino, 1982), Rend. Sem. Mat. Univ. Politec. Torino, special issue (1983), 105–114 (1984).

E. Hebey, F. Pacard and D. Pollack, A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Comm. Math. Phys. 278 (2008), no. 1, 117–132.

A.E. Kogoj and E. Lanconelli, On semilinear ∆λ -Laplace equation, Nonlinear Anal. 75 (2012), no. 12, 4637–4649.

A.E. Kogoj and E. Lanconelli, Linear and semilinear problems involving ∆λ Laplacians, Proceedings of the International Conference “Two nonlinear days in Urbino 2017” (2018), Electron. J. Differ. Equ. Conf., vol. 25, Texas State Univ.–San Marcos, Dept. Math., San Marcos, TX, pp. 167–178.

A.E. Kogoj and S. Sonner, Attractors for a class of semi-linear degenerate parabolic equations, J. Evol. Equ. 13 (2013), no. 3, 675–691.

A.E. Kogoj and S. Sonner, Hardy type inequalities for ∆λ -Laplacians, Complex Var. Elliptic Equ. 61 (2016), no. 3, 422–442.

P. Le, A.T. Duong and N.T. Nguyen, Liouville-type theorems for sub-elliptic systems involving ∆λ -Laplacian, Complex Var. Elliptic Equ. 66 (2021), no. 12, 2131–2140.

D.T. Luyen and N.M. Tri, Existence of solutions to boundary-value problems for similinear ∆γ differential equations, Math. Notes 97 (2015), no. 1–2, 73–84.

L. Ma, Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg–Landau equation, C.R. Math. Acad. Sci. Paris 348 (2010), no. 17–18, 993–996.

L. Ma and X. Xu, Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space, C.R. Math. Acad. Sci. Paris 347 (2009), 13–14, 805–808.

D.D. Monticelli, Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 611–654.

F. Mtiri, On the classification of solutions to a weighted elliptic system involving the Grushin operator, Acta Appl. Math. 174 (2021), paper no. 7, 21.

B. Rahal, Liouville-type theorems with finite Morse index for semilinear ∆λ -Laplace operators, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 3, paper no. 21, 19.

B. Rahal, On stable entire solutions of sub-elliptic system involving advection terms with negative exponents and weights, J. Inequal. Appl. (2020), paper no. 119, 16.

B. Rahal and M.K. Hamdani, Infinitely many solutions for ∆α -Laplace equations with sign-changing potential, J. Fixed Point Theory Appl. 20, (2018), no. 4, Art. 137, 17.

Y. Wei, C. Chen, Q. Chen and H. Yang, Liouville-type theorem for nonlinear elliptic equations involving p-Laplace-type Grushin operators, Math. Methods Appl. Sci. 43 (2020), no. 1, 320–333.

Y. Wei, C. Chen and H. Yang, Liouville-type theorem for Kirchhoff equations involving Grushin operators, Bound. Value Probl. (2020), paper no. 13, 18.

X. Yu, Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math. 17 (2015), no. 5, 1450050, 12.

L. Zhao, Harnack inequality for parabolic Lichnerowicz equations on complete noncompact Riemannian manifolds, Bound. Value Probl. 2013 (2013), 190, 10.

L. Zhao, Gradient estimates for a simple parabolic Lichnerowicz equation, Osaka J. Math. 51 (2014), no. 1, 245–256.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
DUONG, Anh Tuan and NGUYEN, Thi Quynh. A note on positive solutions of Lichnerowicz equations involving the $\Delta_\lambda$-Laplacian. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 2, pp. 591 - 600. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2022.076.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 2 (December 2023)

Section

Articles

License

Copyright (c) 2023 Anh Tuan Duong, Thi Quynh Nguyen

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop