Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A class of singular $k_i$-Hessian systems
  • Home
  • /
  • A class of singular $k_i$-Hessian systems
  1. Home /
  2. Archives /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

A class of singular $k_i$-Hessian systems

Authors

  • Meiqiang Feng https://orcid.org/0000-0002-5669-0851

DOI:

https://doi.org/10.12775/TMNA.2022.072

Keywords

Singular $k_i$-Hessian systems, positive solutions, topological methods, existence, nonexistence and multiplicity

Abstract

Our main objective of this article is to investigate a class of singular $k_i$-Hessian systems. Among others, we obtain new theorems on the existence and multiplicity of positive radial solutions. Several nonexistence theorems are also derived.

References

H. Amann, Fixed point equations and nonlinear eigenvalue problems in order Banach spaces, SIAM Rev. 18 (1976), 620–709.

J. Bao, H. Li and Y.Y. Li, On the exterior Dirichlet problem for Hessian equations, Trans. Amer. Math. Soc. 366 (2014), 6183–6200.

D.P. Covei, A remark on the existence of entire large and bounded solutions to a (k1 , k2 )Hessian system with gradient term, Acta Math. Sinica 33 (2017), 761–774.

D.P. Covei, A remark on the existence of positive radial solutions to a Hessian system, AIMS Math. 6 (2021), 14035–14043.

J. Cui, Existence and nonexistence of entire k-convex radial solutions to Hessian type system, Adv. Difference Equ. 2021 (2021), article no. 462.

G. Dai, Bifurcation and admissible solutions for the Hessian equation, J. Funct. Anal. 273 (2017), 3200–3240.

M. Feng, New results of coupled system of k-Hessian equations, Appl. Math. Lett. 94 (2019), 196–203.

M. Feng, Convex solutions of Monge–Ampére equations and systems: Existence, uniqueness and asymptotic behavior, Adv. Nonlinear Anal. 10 (2021), 371–399.

M. Feng and X. Zhang, A coupled system of k-Hessian equations, Math. Methods Appl. Sci. 44 (2021), 7377–7394.

C. Gao, X. He and M. Ran, On a power-type coupled system of k-Hessian equations, Quaest. Math. 44 (2021), 1593–1612.

B. Guan, The Dirichlet problem for Hessian equations on Riemannian manifolds, Calc. Var. Partial Differential Equations 8 (1999), 45–69.

D.D. Hai, Existence and uniqueness of solutions for quasilinear elliptic systems, Proc. Amer. Math. Soc. 133 (2004), 223–228.

D.D. Hai and R. Shivaji, An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Edinb. Math. Soc. Ser. A 134 (2004), 137–141.

D.D. Hai and H.Y. Wang, Nontrivial solutions for p-Laplacian systems, J. Math. Anal. Appl. 330 (2007), 186–194.

Y. Huang, Boundary asymptotical behavior of large solutions to Hessian equations, Pacific J. Math. 244 (2010), 85–98.

J. Ji, F. Jiang and B. Dong, On the solutions to weakly coupled system of ki -Hessian equations, J. Math. Anal. Appl. 513 (2022), 126217.

F. Jiang and N. Trudinger, On the Dirichlet problem for general augmented Hessian equations, J. Differential Equations 269 (2020), 5204–5227.

K.Q. Lan, Nonzero positive solutions of systems of elliptic boundary value problems, Proc. Amer. Math. Soc. 139 (2011), 4343–4349.

K.Q. Lan and Z. Zhang, Nonzero positive weak solutions of systems of p-Laplace equations, J. Math. Anal. Appl. 394 (2012), 581–591.

D. Li and S. Ma, Existence and boundary behavior of solutions of Hessian equations with singular right-hand sides, J. Funct. Anal. 276 (2019), 2969–2989

N. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 (1995), 151–164.

J.I.E. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana Univ. Math. J.39 (1990), 355–382.

F. Wang and Y. An, Triple nontrivial radial convex solutions of systems of Monge–Ampère equations, Appl. Math. Lett. 25 (2012), 88–92.

G. Wang, Z. Yang, L. Zhang and D. Baleanu, Radial solutions of a nonlinear kHessian system involving a nonlinear operator, Commun. Nonlinear Sci. Numer. Simul. 91 (2020), 105396.

H. Wang, Convex solutions of systems arising from Monge–Ampère equations, Electron. J. Qual. Theory Differ. Equ. 26 (2009), Special Edition I, 1—8.

X.J. Wang, A class of fully nonlinear elliptic equations and related functionals, Indiana Univ. Math. J. 43 (1994), 25–54.

W. Wei, Uniqueness theorems for negative radial solutions of k-Hessian equations in a ball, J. Differential Equations 261 (2016), 3756–3771.

W. Wei, Existence and multiplicity for negative solutions of k-Hessian equations, J. Differential Equations 263 (2017), 615–640.

X. Zhang, Existence and uniqueness of nontrivial radial solutions for k-Hessian equations, J. Math. Anal. Appl. 492 (2020), 124439.

X. Zhang and Y. Du, Sharp conditions for the existence of boundary blow-up solutions to the Monge–Ampère equation, Calc. Var. Partial Differential Equations 57 (2018), article no. 30.

X. Zhang and M. Feng, The existence and asymptotic behavior of boundary blow-up solutions to the k-Hessian equation, J. Differential Equations 267 (2019), 4626–4672.

X. Zhang and M. Feng, Blow-up solutions to the Monge-Ampère equation with a gradient term: sharp conditions for the existence and asymptotic estimates, Calc. Var. Partial Differerential Equations 61 (2022), article no. 208.

X. Zhang, L. Liu, Y. Wu and Y. Cui, A sufficient and necessary condition of existence of blow-up radial solutions for a k-Hessian equation with a nonlinear operator, Nonlinear Anal. Model. Control 25 (2020), 126–143.

X. Zhang, P. Xu and Y. Wu, The eigenvalue problem of a singular k-Hessian equation, Appl. Math. Lett. 124 (2022), 107666.

Z. Zhang and Z. Qi, On a power-type coupled system of Monge–Ampère equations. Topol. Methods Nonlilear Anal. 46 (2015), 717–729.

Z. Zhang and S. Zhou, Existence of entire positive k-convex radial solutions to Hessian equations and systems with weights, Appl. Math. Lett. 50 (2015), 48–55.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
FENG, Meiqiang. A class of singular $k_i$-Hessian systems. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 1, pp. 341 - 365. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.072.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 1 (September 2023)

Section

Articles

License

Copyright (c) 2023 Meiqiang Feng

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop