Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Liouville type theorems for Kirchhoff sub-elliptic equations involving $\Delta_\lambda$-operators
  • Home
  • /
  • Liouville type theorems for Kirchhoff sub-elliptic equations involving $\Delta_\lambda$-operators
  1. Home /
  2. Archives /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

Liouville type theorems for Kirchhoff sub-elliptic equations involving $\Delta_\lambda$-operators

Authors

  • Thi Thu Huong Nguyen https://orcid.org/0000-0003-1479-1846
  • Dao Trong Quyet https://orcid.org/0000-0002-7919-9221
  • Thi Hien Anh Vu

DOI:

https://doi.org/10.12775/TMNA.2022.071

Keywords

Liouville type theorems, $\Delta_\lambda$-Laplacian, stable solutions, Kirchhoff equations

Abstract

In this paper, we study the Kirchhoff elliptic equations of the form $$ -M(\|\nabla_\lambda u\|^2)\Delta_\lambda u=w(x)f(u) \quad \mbox{in }\mathbb R^{N}, $$ where $M$ is a smooth monotone function, $w$ is a weight function and $f(u)$ is of the form $u^p, e^u$ or $-u^{-p}$. The operator $\Delta_\lambda$ is strongly degenerate and given by $$ \Delta_\lambda=\sum_{j=1}^N \frac{\partial}{\partial x_j}\bigg(\lambda_j^2(x)\frac{\partial }{\partial x_j}\bigg). $$ We shall prove some classifications of stable solutions to the equation above under general assumptions on $M$ and $\lambda_j$, $j=1,\ldots,N$.

References

C.O. Alves, F.J.S.A. Corrêa and G.M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl. 2(2010), no. 3, 409–417.

G. Autuori and P. Pucci, Kirchhoff systems with nonlinear source and boundary damping terms, Commun. Pure Appl. Anal. 9 (2010), no. 5, 1161–1188.

G. Autuori, P. Pucci, and M.C. Salvatori, Asymptotic stability for nonlinear Kirchhoff systems, Nonlinear Anal. 10 (2009), no. 2, 889–909.

G. Autuori, P. Pucci and M.C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal. 196 (2010), no. 2, 489–516.

C. Cowan, Stability of entire solutions to supercritical elliptic problems involving advection, Nonlinear Anal. 104 (2014), 1–11.

Y. Du and Z. Guo, Positive solutions of an elliptic equation with negative exponent: stability and critical power, J. Differential Equations 246 (2009), no. 6, 2387–2414.

A.T. Duong, T.H. Giang, P. Le and T.H.A. Vu, Classification results for a sub-elliptic system involving the ∆λ -Laplacian, Math. Methods Appl. Sci. 44 (2021), no. 5, 3615–3629.

A.T. Duong, D. Lan, P.Q. Le and P.T. Nguyen, On the nonexistence of stable solutions of sub-elliptic systems with negative exponents, Complex Var. Elliptic Equ. 64 (2019), no. 12, 2117–2129.

A.T. Duong and N.T. Nguyen, Liouville type theorems for elliptic equations involving Grushin operator and advection, Electron. J. Differential Equations (2017), paper no. 108, 11.

L. Dupaigne and A. Farina Stable solutions of −∆u = f (u) in RN , J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 855–882.

H. Fan and X. Liu, Positive and negative solutions for a class of Kirchhoff type problems on unbounded domain, Nonlinear Anal. 114 (2015), 186–196.

A. Farina, On the classification of solutions of the Lane–Emden equation on unbounded domains of RN , J. Math. Pures Appl. (9) 87 (2007), no. 5, 537–561.

A. Farina, Stable solutions of −∆u = eu on RN , C.R. Math. Acad. Sci. Paris 345 (2007), no. 2, 63–66.

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598.

N.V. Huynh and P. Le, Instability of solutions to Kirchhoff type problems in low dimension, Ann. Polon. Math. 124 (2020), no. 1, 75–91.

N.V. Huynh, P. Le and D.P. Nguyen, Liouville theorems for Kirchhoff equations in RN , J. Math. Phys. 60 (2019), no. 6, 061506, 7.

A.E. Kogoj and E. Lanconelli, On semilinear ∆λ -Laplace equation, Nonlinear Anal. 75 (2012), no. 12, 4637–4649.

A.E. Kogoj and E. Lanconelli, Linear and semilinear problems involving ∆λ Laplacians, Proceedings of the International Conference “Two nonlinear days in Urbino 2017”, Electron. J. Differ. Equ. Conf., vol. 18, 2018, Texas State Univ., San Marcos, Dept. Math., San Marcos, TX, pp. 167–178.

A.E. Kogoj and S. Sonner, Attractors for a class of semi-linear degenerate parabolic equations, J. Evol. Equ. 13 (2013), no. 3, 675–691.

A.E. Kogoj and S. Sonner, Hardy type inequalities for ∆λ -Laplacians, Complex Var. Elliptic Equ. 61 (2016), no. 3, 422–442.

P. Le, N.V. Huynh and V. Ho, Classification results for Kirchhoff equations in RN , Complex Var. Elliptic Equ. 64 (2019), no. 7, 1146–1157.

A. Li and J. Su, Existence and multiplicity of solutions for Kirchhoff-type equation with radial potentials in R3 , Z. Angew. Math. Phys. 66 (2015), no. 6, 3147–3158.

Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations 253 (2012), no. 7, 2285–2294.

J.-L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), North-Holland Math. Stud., vol. 30, 1978, North Holland, Amsterdam, New York, pp. 284–346.

D.T. Luyen and N.M. Tri, Existence of solutions to boundary-value problems for similinear ∆γ differential equations, Math. Notes 97 (2015), no. 1–2, 73–84.

L. Ma and J.C. Wei, Properties of positive solutions to an elliptic equation with negative exponent, J. Funct. Anal. 254 (2008), no. 4, 1058–1087.

J. Nie and X. Wu, Existence and multiplicity of non-trivial solutions for Schrödinger–Kirchhoff-type equations with radial potential, Nonlinear Anal. 75 (2012), no. 8, 3470–3479.

B. Rahal, Liouville-type theorems with finite Morse index for semilinear ∆λ -Laplace operators, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 3, paper no. 21, 19.

Y. Wei, C. Chen, H. Song and H. Yang, Liouville-type theorems for stable solutions of Kirchhoff equations with exponential and superlinear nonlinearities, Complex Var. Elliptic Equ. 64 (2019), no. 8, 1297–1309.

Y. Wei, C. Chen and H. Yang, Liouville-type theorem for Kirchhoff equations involving Grushin operators, Bound. Value Probl. (2020), paper no. 13, 18.

X. Yu, Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math. 17 (2015), no. 5, 1450050, 12.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
NGUYEN, Thi Thu Huong, QUYET, Dao Trong and VU, Thi Hien Anh. Liouville type theorems for Kirchhoff sub-elliptic equations involving $\Delta_\lambda$-operators. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 1, pp. 327 - 340. [Accessed 24 December 2025]. DOI 10.12775/TMNA.2022.071.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 1 (September 2023)

Section

Articles

License

Copyright (c) 2023 Thi Thu Huong Nguyen, Dao Trong Quyet, Thi Hien Anh Vu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop