Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Compactness in normed spaces: a unified approach through semi-norms
  • Home
  • /
  • Compactness in normed spaces: a unified approach through semi-norms
  1. Home /
  2. Archives /
  3. Vol 62, No 1 (September 2023) /
  4. Articles

Compactness in normed spaces: a unified approach through semi-norms

Authors

  • Jacek Gulgowski https://orcid.org/0000-0002-7706-9263
  • Piotr Kasprzak https://orcid.org/0000-0003-2654-9934
  • Piotr Maćkowiak https://orcid.org/0000-0003-1807-0704

DOI:

https://doi.org/10.12775/TMNA.2022.064

Keywords

Compactness criterion, equinormed set, functions of bounded Schramm variation, precompact set, relatively compact set, semi-norm

Abstract

In this paper we prove two new abstract compactness criteria in normed spaces. To this end we first introduce the notion of an equinormed set using a suitable family of semi-norms on the given normed space satisfying some natural conditions. Those conditions, roughly speaking, state that the norm can be approximated (on the equinormed sets even uniformly) by the elements of this family. As we are given some freedom of choice of the underlying semi-normed structure that is used to define equinormed sets, our approach opens a new perspective for building compactness criteria in specific normed spaces. As an example we show that natural selections of families of semi-norms in spaces $C(X,\R)$ and $l^p$ for $p\in[1,+\infty)$ lead to the well-known compactness criteria (including the Arzel\`a-Ascoli theorem). In the second part of the paper, applying the abstract theorems, we construct a simple compactness criterion in the space of functions of bounded Schramm variation.

References

R.R. Akhmerov, M.I. Kamenskiı̆, A.S. Potapov, A.E. Rodkina and B.N. Sadovskiı̆, Measures of Noncompactness and Condensing Operators, Operator Theory: Advances and Applications, vol. 55, Birkhäuser Verlag, Basel, 1992.

A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova 39 (1967), 349–360.

J. Appell, J. Banaś and N. Merentes, Bounded variation and around, De Gruyter Series in Nonlinear Analysis and Applications, vol. 17, De Gruyter, Berlin, 2014.

M. Borkowski, D. Bugajewska and P. Kasprzak, Selected Problems in Nonlinear Analysis, The Nicolaus Copernicus University Press, Toruń, 2021.

D. Bugajewski and J. Gulgowski, On the characterization of compactness in the space of functions of bounded variation in the sense of Jordan, J. Math. Anal. Appl. 484 (2020), no. 2, 123752, 17 pp.

J. Gulgowski, Compactness in the spaces of functions of bounded variation, iZeitschrift fr Analysis und ihre Anwendungen (accepted).

R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press, Oxford University Press, New York, 1997.

R. Precup, Methods in Nonlinear Integral Equations, Springer-Science, Business Media, B.V., Dordrecht, 2002.

W. Rudin, Principles of Mathematical Analysis, International Series in Pure and Applied Mathematics, McGraw–Hill Inc., 1976.

S. Schmidt, Representation of the Hausdorff measure of noncompacntess in special Banach spaces, Comment. Math. Univ. Carolinae 30 (1989), no. 4, 733–735.

M. Schramm, Functions of Φ-bounded variation and Riemann–Stieltjes integration, Trans. Amer. Math. Soc. 287 (1985), no. 1, 49–63.

M. Schramm and D. Waterman, On the magnitude of Fourier coefficients, Proc. Amer. Math. Soc. 85 (1982), no. 3, 407–410.

M. Shiba, On absolute convergence of Fourier series of function of class Λ − BV(p) , Sci. Rep. Fac. Ed. Fukushima Univ. 30 (1980), 7–10.

Y. Si and J. Xu, Relatively compact sets of Banach space-valued bounded-variation spaces, Banach J. Math. Anal. 17 (2023), no. 7, DOI: 10.1007/s43037-022-00230-5.

A. Vince, A rearrangement inequality and the permutahedron, Amer. Math. Monthly 97 (1990), no. 4, 319–323.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-09-23

How to Cite

1.
GULGOWSKI, Jacek, KASPRZAK, Piotr and MAĆKOWIAK, Piotr. Compactness in normed spaces: a unified approach through semi-norms. Topological Methods in Nonlinear Analysis. Online. 23 September 2023. Vol. 62, no. 1, pp. 105 - 134. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.064.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 62, No 1 (September 2023)

Section

Articles

License

Copyright (c) 2023 Jacek Gulgowski, Piotr Kasprzak, Piotr Maćkowiak

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop