Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence theory for nabla fractional three-point boundary value problems via continuation methods for contractive maps
  • Home
  • /
  • Existence theory for nabla fractional three-point boundary value problems via continuation methods for contractive maps
  1. Home /
  2. Archives /
  3. Vol 61, No 2 (June 2023) /
  4. Articles

Existence theory for nabla fractional three-point boundary value problems via continuation methods for contractive maps

Authors

  • Jagan Mohan Jonnalagadda https://orcid.org/0000-0002-1310-8323

DOI:

https://doi.org/10.12775/TMNA.2022.043

Keywords

Nabla fractional calculus, boundary value problem, Green's function, continuation method for contractive maps, fixed point, existence, uniqueness

Abstract

In this article, we analyse an $\alpha$-th order, $1 < \alpha \leq 2$, nabla fractional three-point boundary value problem (BVP). We construct the Green's function associated to this problem and derive a few of its important properties. We then establish sufficient conditions on existence and uniqueness of solutions for the corresponding nonlinear BVP using the modern ideas of continuation methods for contractive maps. Our results extend recent results on nabla fractional BVPs. Finally, we provide an example to illustrate the applicability of main results.

References

T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl. 62 (2011), no. 3, 1602–1611.

T. Abdeljawad and F.M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal. (2012), Art. ID 406757, 13 pp.

R. P. Agarwal and D. O’Regan, Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl. 248 (2000), no. 2, 402–414.

R.P. Agarwal, D. O’Regan and R. Precup, Fixed point theory and generalized Leray–Schauder alternatives for approximable maps in topological vector spaces, Topol. Methods Nonlinear Anal. 22 (2003), no. 1, 193–202.

S.S. Almuthaybiri and C.C. Tisdell, Global existence theory for fractional differential equations: new advances via continuation methods for contractive maps, Analysis 39 (2019), no. 4, 117–128.

D.R. Anderson, Solutions to second-order three-point problems on time scales, J. Difference Equ. Appl. 8 (2002), no. 8, 673–688.

D. Ariza-Ruiz and A. Jimenez-Melado, A continuation method for weakly Kannan maps, Fixed Point Theory Appl. (2010), Art. ID 321594, 12 pp.

F.M. Atici and P.W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. (2009), Special Edition I, no. 3, 12 pp.

M. Bohner and A. Peterson, Dynamic Equations on Time Scales. An Introduction with Applications, Birkhäuser, Boston, MA, 2001.

C. Chen, M. Bohner and B. Jia, Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations, Turk. J. Math. 44 (2020), 857–869.

W.S. Cheung and J. Ren, Positive solution for discrete three-point boundary value problems, Aust. J. Math. Anal. Appl. 1 (2004), no. 2, Art. 9, 7 pp.

W.S. Cheung, J. Ren, P.J.Y. Wong and D. Zhao, Multiple positive solutions for discrete nonlocal boundary value problems, J. Math. Anal. Appl. 330 (2007), no. 2, 900–915.

C.S. Goodrich, On a discrete fractional three-point boundary value problem, J. Difference Equ. Appl. 18 (2012), no. 3, 397–415.

C.S. Goodrich, Coercivity of linear functionals on finite dimensional spaces and its application to discrete BVPs, J. Difference Equ. Appl. 22 (2016), no. 5, 623–636.

C. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015.

A. Granas and J. Dugundji, Fixed Point Theory, Springer–Verlag, New York, 2003.

J. Hein, Z. McCarthy, N. Gaswick, B. McKain and K. Speer, Laplace transforms for the nabla-difference operator, PanAmer. Math. J. 21 (2011), no. 3, 79–97.

J. Henderson, S.K. Ntouyas and I.K. Purnaras, Positive solutions for systems of nonlinear discrete boundary value problems, J. Difference Equ. Appl. 15 (2009), no. 10, 895–912.

A. Ikram, Lyapunov inequalities for nabla Caputo boundary value problems, J. Difference Equ. Appl. 25 (2019), no. 6, 757–775.

J.M. Jonnalagadda, On a nabla fractional boundary value problem with general boundary conditions, AIMS Mathematics 5 (2019), no. 1, 204–215.

J.M. Jonnalagadda, On two-point Riemann–Liouville type nabla fractional boundary value problems, A dv. Dyn. Syst. Appl. 13 (2018), no. 2, 141–166.

W.G. Kelley and A.C. Peterson, Difference Equations. An Introduction with Applications, Second edition, Harcourt/Academic Press, San Diego, CA, 2001.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006.

W.A. Kirk and N. Shahzad, Continuation methods in certain metric and geodesic spaces, Bull. Math. Sci. 6 (2016), no. 2, 311–323.

X. Liu, B. Jia, S. Gensler, L. Erbe and A. Peterson, Convergence of approximate solutions to nonlinear Caputo nabla fractional difference equations with boundary conditions, Electron. J. Differential Equations (2020), no. 4, 19 pp.

R. Ma and Y.N. Raffoul, Positive solutions of three-point nonlinear discrete second order boundary value problem, J. Difference Equ. Appl. 10 (2004), no. 2, 129–138.

D. O’Regan, Fixed point theorems for nonlinear operators, J. Math. Anal. Appl. 202 (1996), no. 2, 413–432.

D. O’Regan and R. Precup, Theorems of Leray–Schauder Type and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.

D. O’Regan and R. Precup, Compression-expansion fixed point theorem in two norms and applications, J. Math. Anal. Appl. 309 (2005), no. 2, 383–391.

I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of Their Applications, Academic Press, San Diego, CA, 1999.

R. Precup, Discrete continuation method for boundary value problems on bounded sets in Banach spaces. Fixed point theory with applications in nonlinear analysis, J. Comput. Appl. Math. 113 (2000), no. 1–2, 267–281.

R. Precup, Existence theorems for nonlinear problems by continuation methods, Nonlinear Anal. 30 (1997), no. 6, 3313–3322.

R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002.

R. Precup, On the continuation method and the nonlinear alternative for Caristi-type non-self-mappings, J. Fixed Point Theory Appl. 16 (2014), no. 1–2, 3–10.

J.R.L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, J. London Math. Soc. (2) 74 (2006), no. 3, 673–693.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-07-16

How to Cite

1.
JONNALAGADDA, Jagan Mohan. Existence theory for nabla fractional three-point boundary value problems via continuation methods for contractive maps. Topological Methods in Nonlinear Analysis. Online. 16 July 2023. Vol. 61, no. 2, pp. 869 - 888. [Accessed 10 December 2025]. DOI 10.12775/TMNA.2022.043.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 2 (June 2023)

Section

Articles

License

Copyright (c) 2023 Jagan Mohan Jonnalagadda

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop