Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Multiple solutions to Bahri-Coron problem involving fractional $p$-Laplacian in some domain with nontrivial topology
  • Home
  • /
  • Multiple solutions to Bahri-Coron problem involving fractional $p$-Laplacian in some domain with nontrivial topology
  1. Home /
  2. Archives /
  3. Vol 61, No 2 (June 2023) /
  4. Articles

Multiple solutions to Bahri-Coron problem involving fractional $p$-Laplacian in some domain with nontrivial topology

Authors

  • Uttam Kumar
  • Sweta Tiwari

DOI:

https://doi.org/10.12775/TMNA.2022.033

Keywords

Non-local problem, fractional p-Laplacian, critical exponent, global compactness

Abstract

In this article, we establish the existence of positive and multiple sign-changing solutions to the fractional $p$-Laplacian equation with purely critical nonlinearity \begin{equation} \label{Ppomegas-a}\tag{P$_{p,\Omega}^{s}$} \begin{cases} (-\Delta)_{p}^s u =|u|^{p_s^*-2} u& \text{in }\Omega, \\ u =0 & \text{on }\Omega^{c}, \end{cases} \end{equation} in a bounded domain $\Omega\subset \mathbb{R}^{N}$ for $s\in (0,1)$, $p\in (1,\infty)$, and the fractional critical Sobolev exponent $p^{*}_{s}={Np}/({N-sp})$ under some symmetry assumptions. We study Struwe's type global compactness results for the Palais-Smale sequence in the presence of symmetries.

References

W. Abdelhedi, H. Chtioui and H. Hajaiej, The Bahri–Coron theorem for fractional Yamabe-type problems, Adv. Nonlinear Stud. 18 (2018), no. 2, 393–407.

D. Applebaum, Lévy processes – from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), no. 11, 1336–1347.

A. Bahri and J.M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent:the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), no. 3, 253–294.

T. Bartsch, Z. Liu and T. Weth, Nodal solutions of a p-Laplacian equation, Proc. London Math. Soc. (3) 91 (2005), no1̇, 129–152.

L. Brasco and E. Parini, The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var. 9 (2016), no. 4, 323–355.

L. Brasco, M. Squassina and Y. Yang, Global compactness results for nonlocal problems, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 3, 391–424.

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, vol. 20, Springer, Cham, Unione Matematica Italiana, Bologna, 2016.

L.A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), no. 3, 1903–1930.

X. Chang, Z. Nie and Z.-Q. Wang, Sign-changing solutions of fractional p-Laplacian problems, Adv. Nonlinear Stud. 19 (2019), no. 1, 29–53.

X. Chang and Z.Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Eqnuations 256 (2014), no. 8, 2965–2992.

W. Chen, S. Mosconi and M. Squassina, Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal. 275 (2018), no. 11, 3065–3114.

M. Clapp, A global compactness result for elliptic problems with critical nonlinearity on symmetric domains, Nonlinear Equations: Methods, Models and Applications (Bergamo, 2001), Progr. Nonlinear Differential Equations Appl., vol. 54, Birkhäuser, Basel, 2003, pp. 117–126.

M. Clapp and J. Faya, Multiple solutions to the Bahri–Coron problem in some domains with nontrivial topology, Proc. Amer. Math. Soc. 141 (2013), no. 12, 4339–4344.

M. Clapp and J. Faya, Multiple solutions to anisotropic critical and supercritical problems in symmetric domains, Contributions to Nonlinear Elliptic Equations and Systems, Progr. Nonlinear Differential Equations Appl., vol. 86, Birkhäuser–Springer, Cham, 2015, pp. 99–120.

M. Clapp and F. Pacella, Multiple solutions to the pure critical exponent problem in domains with a hole of arbitrary size, Math. Z. 259 (2008), no. 3, 575–589.

M. Clapp and S. Tiwari, Multiple solutions to a pure supercritical problem for the pLaplacian, Calc. Var. Partial Differential Equations 55 (2016), no. 1, art. 7, 23 pp.

M. Clapp and T. Weth, Minimal nodal solutions of the pure critical exponent problem on a symmetric domain, Calc. Var. Partial Differential Equations 21 (2004), no. 1, 1–14.

J. Dávila, M. del Pino, S. Dipierro and E. Valdinoci, Nonlocal Delaunay surfaces, Nonlinear Anal. 137 (2016), 357–380.

S. Dipierro, O. Savin and E. Valdinoci, Graph properties for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations 55 (2016), no. 4, Art. 86, 25 pp. [20] G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma (N.S.) 5 (2014), no. 2, 373–386.

C. Mercuri and F. Pacella, On the pure critical exponent problem for the p-Laplacian, Calc. Var. Partial Differential Equations 49 (2014), no. 3–4, 1075–1090.

S. Mosconi, N. Shioji and M. Squassina, Nonlocal problems at critical growth in contractible domains, Asymptot. Anal. 95 (2015), no. 1–2, 79–100.

S. Mosconi and M. Squassina, Nonlocal problems at nearly critical growth, Nonlinear Anal. 136 (2016), 84–101.

S Mosconi and M. Squassina, Recent progresses in the theory of nonlinear nonlocal problems, Bruno Pini Mathematical Analysis Seminar 2016, Bruno Pini Math. Anal. Semin., vol. 7, Univ. Bologna, Alma Mater Stud., Bologna, 2016, pp. 147–164.

R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979), no. 1, 19–30.

S. Patrizi and E. Valdinoci, Relaxation times for atom dislocations in crystals, Calc. Var. Partial Differential Equations 55 (2016), no. 3, Art. 71, 44 pp.

P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Conference Board of the Mathematical Sciences, CBMS Reg. Conf. Ser. Math., vol. 5, Washington, DC; Amer.Math. Soc., Providence, RI, 1986.

X. Ros-Oton and J. Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213 (2014), no. 2, 587–628.

S. Secchi, N. Shioji and M. Squassina, Coron problem for fractional equations, Differential Integral Equations 28 (2015), no. 1–2, 103–118.

J.L. Vázquez, The Dirichlet problem for the fractional p-Laplacian evolution equation, J. Differential Equations 260 (2016), no. 7, 6038–6056.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-06-23

How to Cite

1.
KUMAR, Uttam and TIWARI, Sweta. Multiple solutions to Bahri-Coron problem involving fractional $p$-Laplacian in some domain with nontrivial topology. Topological Methods in Nonlinear Analysis. Online. 23 June 2023. Vol. 61, no. 2, pp. 717 - 742. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.033.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 2 (June 2023)

Section

Articles

License

Copyright (c) 2023 Uttam Kumar, Sweta Tiwari

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop