Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Borsuk-Ulam theorems for elementary abelian 2-groups
  • Home
  • /
  • Borsuk-Ulam theorems for elementary abelian 2-groups
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Borsuk-Ulam theorems for elementary abelian 2-groups

Authors

  • Michael C. Crabb

DOI:

https://doi.org/10.12775/TMNA.2022.042

Keywords

Borsuk-Ulam theorem, Bourgin-Yang theorem, equivariant mapping, Euler class

Abstract

Let $G$ be a fct Lie group and let $U$ and $V$ be finite-dimensional real $G$-modules with $V^G=0$. A theorem of Marzantowicz, de Mattos and dos Santos estimates the covering dimension of the zero-set of a $G$-map from the unit sphere in $U$ to $V$ when $G$ is an elementary abelian $p$-group for some prime $p$ or a torus. In this note, the classical Borsuk-Ulam theorem will be used to give a refinement of their result estimating the dimension of that part of the zero-set on which an elementary abelian $p$-group $G$ acts freely or a torus $G$ acts with finite isotropy groups. The methods also provide an easy answer to a question raised in \cite{DM}.

References

I. Axelrod-Freed and P. Soberón, Bisections of mass assignments using flags of affine spaces (2021), arXiv math.CO: 2109.13106.

P.V.M. Blagojević, A.S. Dimitrijević Blagojević and G.M. Ziegler, Polynomial partitioning for several sets of varieties, J. Fixed Point Theory Appl. 19 (2017), 1653–1660.

P.V.M. Blagojević and R. Karasev, Extensions of theorems of Rattray and Makeev, Topol. Methods Nonlinear Anal. 40 (2012), 189–213.

Z. Blaszczyk, W. Marzantowicz and M. Singh, Equivariant maps between representation spheres, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), 621–630.

Z. Blaszczyk, W. Marzantowicz and M. Singh, General Bourgin-Yang theorems, Top. Appl. 249 (2018), 112–126.

Y.H. Chan, S. Chen, F. Frick and J.T. Hull, An optimal Borsuk–Ulam theorem for products of spheres and Stiefel manifolds, Topol. Methods Nonlinear Anal. 55 (2020), 553–564.

M.C. Crabb, Connective K-theory and the Borsuk–Ulam theorem, Algebraic Topology and Related Topics (M. Singh et al., eds.), Trends in Mathematics, Birkhäuser–Springer, 2019, pp. 51–66.

M.C. Crabb and J. Jaworowski, Aspects of the Borsuk–Ulam theorem, J. Fixed Point Theory Appl. 13 (2013), 459–488.

M.C. Crabb and M. Singh, Some remarks on the parametrized Borsuk–Ulam theorem, J. Fixed Point Theory Appl. 20 (2018), article 79.

Z. Dzedzej, A. Idzik and M. Izydorek, Borsuk–Ulam type theorems on product spaces II, Topol. Methods Nonlinear Anal. 14 (1999), 345–352.

E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems, Ergodic Theory Dynam. Systems 8 (1988), 73–85.

E.R. Fadell, S.Y. Husseini and P.H. Rabinowitz, Borsuk–Ulam theorems for arbitrary S 1 actions and applications, Trans. Amer. Math. Soc. 274 (1982), 345–360.

L. Guth, Polynomial partitioning for a set of varieties, Math. Proc. Camb. Philos. Soc. 159 (2015), 459–469.

J. Jaworowski, A continuous version of the Borsuk–Ulam theorem, Proc. Amer. Math. Soc. 82 (1981), 112–114.

W. Marzantowicz, D. de Mattos and E.L. dos Santos, Bourgin–Yang version of the Borsuk–Ulam theorem for Zpk -equivariant maps, Algebr. Geom. Topology 12 (2012), 2245–2258.

W. Marzantowicz, D. de Mattos and E.L. dos Santos, Bourgin–Yang versions of the Borsuk–Ulam theorem for p-toral groups, J. Fixed Point Theory Appl. 19 (2017), 1427–1437.

D. Miklaszewski, Borsuk–Ulam theorem for the loop space of a sphere, Top. Appl. 250 (2018), 74–79.

H.J. Munkholm, On the Borsuk–Ulam theorem for Zpa -actions on S 2n−1 and maps S 2n−1 → Rm , Osaka J. Math. 7 (1970), 451–456.

I. Nagaski, Determination of compact Lie groups with the Borsuk–Ulam property (2021), arXiv math.AT: 2107.13158.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
CRABB, Michael C. Borsuk-Ulam theorems for elementary abelian 2-groups. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 135 - 148. [Accessed 8 July 2025]. DOI 10.12775/TMNA.2022.042.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Michael C. Crabb

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop