Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fixed point indices and fixed words at infinity of selfmaps of graphs II
  • Home
  • /
  • Fixed point indices and fixed words at infinity of selfmaps of graphs II
  1. Home /
  2. Archives /
  3. Vol 61, No 1 (March 2023) /
  4. Articles

Fixed point indices and fixed words at infinity of selfmaps of graphs II

Authors

  • Qiang Zhang https://orcid.org/0000-0001-6332-5476
  • Xuezhi Zhao https://orcid.org/0000-0002-6057-7237

DOI:

https://doi.org/10.12775/TMNA.2022.007

Keywords

Index, attracting fixed point, fixed subgroups, graph selfmap, free group

Abstract

The index $\mathrm{ind}(\mathbf{F})$ of a fixed point class $\mathbf{F}$ is a classical invariant in the Nielsen fixed point theory. In the recent paper \cite{ZZ}, the authors introduced a new invariant $\mathrm{ichr}(\mathbf{F})$ called the improved characteristic, and proved that $\mathrm{ind}(\mathbf{F})\leq \mathrm{ichr}(\mathbf{F})$ for all fixed point classes of $\pi_1$-injective selfmaps of connected finite graphs. In this note, we show that the two homotopy invariants mentioned above are exactly the same. Since the improved characteristic is totally determined by the endomorphism of the fundamental group, we give a group-theoretical approach to compute indices of fixed point classes of graph selfmaps. As a consequence, we give a new criterion of a fixed point, which extends the one due to Gaboriau, Jaeger, Levitt and Lustig.

References

M. Bestvina and M. Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992), 1–51.

O. Bogopolski and O. Maslakova, An algorithm for finding a basis of the fixed point subgroup of an automorphism of a free group, Internat. J. Algebra Comput. 26 (2016), no. 1, 29–67.

M.M. Cohen and M. Lustig, On the dynamics and the fixed subgroup of a free group automorphism, Invent. Math. 96 (1989), 613–638.

D. Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987), 453–456.

W. Dicks and E. Ventura, The group fixed by a family of injective endomorphisms of a free group, Contemporary Mathematics, vol. 195, American Mathematical Society, Providence, 1996.

E. Fadell and S. Husseini, The Nielsen number on surfaces, Topological Methods in Nonlinear Functional Analysis (Toronto, Ontario, 1982), Contemp. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1983, pp. 59–98.

D. Gaboriau, A. Jaeger, G. Levitt and M. Lustig, An index for counting fixed points for automorphisms of free groups, Duke Math. J. 93 (1998), no. 3, 425–452.

G. Graff, Fixed point indices of iterates of a low-dimensional diffeomorphism at a fixed point which is an isolated invariant set, Arch. Math. (Basel) 110 (2018), no. 6, 617–627.

G. Graff, J. Jezierski, Minimal number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds, Geom. Dedicata 187 (2017), 241–258.

B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics, vol. 14, American Mathematical Society, Providence, 1983.

B. Jiang, A Primer of Nielsen Fixed Point Theory, Handbook of Topological Fixed Point Theory, Springer, Dordrecht, 2005, pp. 617–645.

B. Jiang, S. Wang and Q. Zhang, Bounds for fixed points and fixed subgroups on surfaces and graphs, Algebr. Geom. Topol. 11 (2011), 2297–2318.

Q. Zhang and X. Zhao, Fixed point indices and fixed words at infinity of selfmaps of graphs, Topology Appl. 302 (2021), paper no. 107819, 25 pp.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2023-02-26

How to Cite

1.
ZHANG, Qiang and ZHAO, Xuezhi. Fixed point indices and fixed words at infinity of selfmaps of graphs II. Topological Methods in Nonlinear Analysis. Online. 26 February 2023. Vol. 61, no. 1, pp. 257 - 267. [Accessed 17 May 2025]. DOI 10.12775/TMNA.2022.007.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 61, No 1 (March 2023)

Section

Articles

License

Copyright (c) 2023 Qiang Zhang, Xuezhi Zhao

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop