Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On radial solutions for some elliptic equations involving operators with unbounded coefficients in exterior domains
  • Home
  • /
  • On radial solutions for some elliptic equations involving operators with unbounded coefficients in exterior domains
  1. Home /
  2. Archives /
  3. Vol 60, No 2 (December 2022) /
  4. Articles

On radial solutions for some elliptic equations involving operators with unbounded coefficients in exterior domains

Authors

  • Anderson L. A. de Araujo https://orcid.org/0000-0002-3640-9794
  • Luiz F.O. Faria https://orcid.org/0000-0001-8579-6738
  • Salomón Alarcón https://orcid.org/0000-0001-9756-4352
  • Leonelo Iturriaga https://orcid.org/0000-0001-7621-7976

DOI:

https://doi.org/10.12775/TMNA.2022.026

Keywords

Elliptic problems, exterior domain, eigenvalue problem, topological methods, variational approach, radial solutions

Abstract

We study existence and multiplicity of radial solutions for some quasilinear elliptic problems involving the operator $L_N=\Delta - x\cdot \nabla$ on $\mathbb{R}^N\setminus B_1$, where $\Delta$ is the Laplacian, $x\cdot \nabla$ is an unbounded drift term, $N\geq 3$ and $B_1$ is the unit ball centered at the origin. We consider: (i) Eigenvalue problems, and (ii) Problems involving a nonlinearity of concave and convex type. On the first class of problems we get a compact embedding result, whereas on the second, we address the well-known question of Ambrosetti, Brezis and Cerami from 1993 concerning the existence of two positive solutions for some problems involving the supercritical Sobolev exponent in symmetric domains for the Laplacian. Specifically, we provide\linebreak a new approach of answering the ABC-question for elliptic problems with unbounded coefficients in exterior domains and we find asymptotic properties of the radial solutions. Furthermore, we study the limit case, namely when nonlinearity involves a sublinear term and a linear term. As far as we know, this is the first work that deals with such a case, even for the Laplacian. In our approach, we use both topological and variational arguments.

References

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709.

A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.

D. Bonheure, B. Noris and T. Weth, Increasing radial solutions for Neumann problems without growth restrictions, Ann. Inst. H. Poincaré Anal. Non Linéaire 29 (2012), 573–588.

H. Brezis, and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

G. Cappa, Maximal regularity for Ornstein–Uhlenbeck equation in convex sets of Banach spaces, J. Differential Equations 260 (2016), 8051–8071.

A. Chojnowska-Michalik and B. Goldys, Generalized Ornstein–Uhlenbeck semigroups: Littlewood–Paley–Stein inequalities and the P.A. Meyer equivalence of norms, J. Funct. Anal. 182 (2001), 243–279.

M. Cranston and Z. Zhao, Conditional transformation of drift formula and potential theory for ∆/2 + b( · )∇, Commun. Math. Phys. 112 (1987), 613–625.

D.G. de Figueiredo, Positive Solutions of Semilinear Elliptic Problems, (D.G. de Figueiredo and C.S. Honig, eds.), Differential Equations, Lecture Notes in Mathematics, vol. 957, Springer, Berlin, Heidelberg, 1982.

D.G. de Figueiredo, J.-P. Gossez and P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 2, 269–286.

L. Figueroa and E. Süli, Greedy approximation of high-dimensional Ornstein–Uhlenbeck operators, Found. Comput. Math. 12 (2012), 573–623.

M. Geissert, H. Heck, M. Hieber and I. Wood, The Ornstein–Uhlenbeck semi-group in exterior domains, Arch. Math. 85 (2005), 554–562.

T. Hansel, On the Navier–Stokes equations with rotating effect and prescribed outflow velocity, J. Math. Fluid Mech. 13 (2011), 405–419.

T. Hansel and A. Rhandi, Non-autonomous Ornstein–Uhlenbeck equations in exterior domains, Adv. Differential Equations 16 (2011), 201–220.

M. Hieber and O. Sawada, The Navier–Stokes equations in Rn with linearly growing initial data, Arch. Ration. Mech. Anal. 175 (2005), 269–285.

T. Hishida, On the Navier–Stokes flow around a rigid body with a prescribed rotation, Nonlinear Anal. 47 (2001), 4217–4231.

M. Jacobsen, Laplace and the origin of the Ornstein–Uhlenbeck process, Bernoulli 2 (1996), no. 3, 271–286.

L. Lorenzi and M. Bertoldi, Analytical methods for markov semigroups, Pure Appl. Math. 283 (2007).

R. Ma, On a conjecture concerning the multiplicity of positive solutions of elliptic problems, Nonlinear Anal. 27 (1996), 775–780.

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian System, Springer–Verlag, New York, 1989.

G. Metafune, Lp -spectrum of Ornstein–Uhlenbeck operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), no. 1, 97–124.

G. Metafune, J. Pruss, A. Rhandi and R. Schnaubelt, The domain of the Ornstein–Uhlenbeck operator on an Lp -space with invariant measure, Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002), 471–485.

G. Prato and A. Lunardi, On the Ornstein–Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94–114.

G. Da Prato and B. Goldys, Elliptic operators on Rd with unbounded coefficients, J. Differential Equations 172 (2001), 333–358.

E. Priola, On a Dirichlet problem involving an Ornstein–Uhlenbeck operator, Potential Anal. 18 (2003), 251–287.

P. Pucci and J. Serrin, The Maximum Principle, Progress in NonlinearDifferential Equations and Their Applications, vol. 73, Birkhäuser–Verlag AG, 2007.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-12-11

How to Cite

1.
DE ARAUJO, Anderson L. A., FARIA, Luiz F.O., ALARCÓN, Salomón and ITURRIAGA, Leonelo. On radial solutions for some elliptic equations involving operators with unbounded coefficients in exterior domains. Topological Methods in Nonlinear Analysis. Online. 11 December 2022. Vol. 60, no. 2, pp. 699 - 723. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.026.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 2 (December 2022)

Section

Articles

License

Copyright (c) 2022 Anderson L. A. de Araujo, Luiz F.O. Faria, Salomón Alarcón, Leonelo Iturriaga

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop