Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Some notes on the topological pressure of non-autonomous systems
  • Home
  • /
  • Some notes on the topological pressure of non-autonomous systems
  1. Home /
  2. Archives /
  3. Vol 60, No 1 (September 2022) /
  4. Articles

Some notes on the topological pressure of non-autonomous systems

Authors

  • Chang-Bing Li https://orcid.org/0000-0002-4969-9057
  • Yuan-Ling Ye

DOI:

https://doi.org/10.12775/TMNA.2022.008

Keywords

Non-autonomous dynamical systems, non-wandering set, topological entropy, topological pressure, equi-continuous system

Abstract

The purpose of this note is to study the equi-continuous non-autonomous dynamical systems. We prove that the topological pressure of the system coincides with the topological pressure restricted on its non-wandering set. To prove this result, due to the lack of an appropriate variational principle for non-autonomous systems, we need to overcome some challenges. We also consider the weakly contractive iterated function systems (IFS), and find that the invariant set of the IFS plays a similar role as the non-wandering set of non-autonomous system.

References

W.C. Cheng and B. Li, Topological pressure dimension, Chaos Solitons Fractals. 53 (2013), 10–17.

J.S. Cánovas, Recent results on non-autonomous discrete systems, SeMA J. 51 (2010), 33–40.

P. Dahlqvist, Computing the topological pressure for intermittent maps, J. Phys. A: Math. Gen. 30 (1997), L351–L358.

M. Hata, On the structure of self-similar sets, Jpn. J. Appl. Math. 2 (1985), 381–414.

X. Huang, X. Wen and F. Zeng, Topological pressure of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory 8 (2008), 43–48.

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1995.

S. Kolyada, M. Misiurewicz and L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval, Fund. Math. 160 (1999), 161–181.

S. Kolyada and L. Snoha, Topological entropy of nonautonomous dynamical systems, AIMS Ser. Random Comput. Dyn. 4 (1996), 205–233.

S. Kolyada, L. Snoha and S. Trofimchuk, On minimality of nonautonomous dynamical systems, Nonlinear. Oscil. 7 (2004), 83–89.

M. Kong, W.-C. Cheng and B. Li, Topological pressure for nonautonomous systems, Chaos Soliton Fractals. 76 (2015), 82–92.

K.-S. Lau and Y.-L. Ye, Ruelle operator with nonexpansive ifs, Studia Math. 148 (2001), 143–169.

K. Leśniak, N. Snigireva and F. Strobin, Weakly contractive iterated function systems and beyond: a manual, J. Difference Equ. Appl. 26 (2020), 1114–1173.

Y. Li, E. Chen and W.-C. Cheng, Tail pressure and the tail entropy function, Ergodic Theory Dynam. Systems 32 (2012), 1400–1417.

R.D. Mauldin, Infinite iterated function systems: theory and applications, Progr. Probab. 37 (1995), 91–110.

R.D. Mauldin and M. Urbański, Dimensions and measures in infinite iterated function systems, Proc. Lond. Math. Soc. 3 (1995), 105–154.

D. Thakkar and R. Das, A note on nonwandering set of a nonautonomous discrete dynamical system, Appl. Math. Sci. 7 (2013), 6849–6854.

P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math., Springer, 2000.

H. Zheng and Y. Zhu, Two notes on the topological pressure of the continuous selfmappings, Acta. Math. Sci. Ser. A 26 (2006), 403–409.

Y. Zhu, Z. Liu, X. Xu and W. Zhang, Entropy of nonautonomous dynamical systems, J. Korean. Math. Soc. 49 (2012), 165–185.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-08-31

How to Cite

1.
LI, Chang-Bing and YE, Yuan-Ling. Some notes on the topological pressure of non-autonomous systems. Topological Methods in Nonlinear Analysis. Online. 31 August 2022. Vol. 60, no. 1, pp. 305 - 326. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2022.008.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 60, No 1 (September 2022)

Section

Articles

License

Copyright (c) 2022 Chang-Bing Li, Yuan-Ling Ye

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop