Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Equilibrium under uncertainty with fuzzy payoff
  • Home
  • /
  • Equilibrium under uncertainty with fuzzy payoff
  1. Home /
  2. Archives /
  3. Vol 59, No 2B (June 2022) /
  4. Articles

Equilibrium under uncertainty with fuzzy payoff

Authors

  • Taras Radul https://orcid.org/0000-0002-0750-8283

DOI:

https://doi.org/10.12775/TMNA.2021.049

Keywords

Non-additive measures, equilibrium under uncertainty, possibility capacity, necessity capacity, fuzzy integral, $t$-norm

Abstract

We study $n$-player games where players form non-additive beliefs about opponent's decisions and answer with pure strategies. The concept of an equilibrium under uncertainty was introduced by J. Dow and S. Werlang (1994) for two players and was extended to $n$-player games by J. Eichberger and D. Kelsey (2000). The authors consider payoff functions expressed by Choquet integral. The concept of an equilibrium under uncertainty with payoff functions expressed by the Sugeno integral were considered by T. Radul (2018). We consider a generalization of this result with payoff functions expressed by fuzzy integral generated by arbitrary continuous $t$-norm.

References

C.D. Aliprantis, M. Florencano and R. Tourky, General equilibrium analisis in ordered topological vector spaces, J. Math. Econom. 40 (2004), 247–269.

T. Banakh and T. Radul, F-Dugundji spaces, F-Milutin spaces and absolute F-valued retracts, Topology Appl. 179 (2015), 34–50.

W. Briec and Ch. Horvath, Nash points, Ky Fan inequality and equilibria of abstract economies in max-plus and B-convexity, J. Math. Anal. Appl. 341 (2008), 188–199.

G.L. O’Brien and W. Verwaat, How subadditive are subadditive capacities? Comment. Math. Univ. Carolinae 35 (1994), 311–324.

A. Chateauneuf, M. Grabisch and A. Rico, Modeling attitudes toward uncertainty through the use of the Sugeno integral, J. Math. Economics 44 (2008), 1084–1099.

J. Dow and S. Werlang, Nash equilibrium under Knightian uncertainty: breaking down backward induction, J. Econ. Theory 64 (1994), 205–224.

D. Dubois, H. Fargier and A.Rico, Sugeno Integrals and the Commutation Problem, 15th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2018), 15 October 2018–18 October 2018 (Palma de Mallorca, Spain), 2018.

D. Dubois, H. Prade and R. Sabbadin, Qualitative decision theory with Sugeno integrals, (2014), arxiv.org 1301.7372.

D. Dubois, J.-L. Marichal, H. Prade, M. Roubens and R. Sabbadin, The use of the discrete Sugeno integral in decision making: a survey, Internat. J. Uncertainty, Fuzziness Knowledge-Based Systems 9 (2001), no. 5, 539–561.

D. Dubois and H. Prade, Fuzzy logics and the generalized modus ponens revisited, Cybernetics and Systems 15 (1984), 293–331.

J. Eichberger and D. Kelsey, Non-additive beliefs and strategic equilibria, Games Econ. Behav. 30 (2000), 183–215.

V.V. Fedorchuk and V.V. Filippov, General Topology. Fundamental Constructions, Moscow, 1988.

T. Flaminio, L. Godo and E. Marchioni, Geometrical aspects of possibility measures on finite domain MV-clans, Soft. Comput. 11 (2000), 1863–1873.

I.Gilboa, Expected utility with purely subjective non-additive probabilities, J. Math. Econ. 16 (1987), 65–88.

D. Glycopantis and A. Muir, Nash equilibria with Knightian uncertainty; the case of capacities, Econ. Theory 37 (2008), 147–159.

H. Hosni and E. Marchioni, Possibilistic randomisation in strategic-form games, Internat. J. Approx. Reason. 114 (2019), 204–225.

E.P. Klement, R. Mesiar and E. Pap, Triangular Norms, Kluwer, Dordrecht, 2000.

R. Kozhan and M. Zarichnyi, Nash equilibria for games in capacities, Econ. Theory 35 (2008), 321–331.

Q. Luo, KKM and Nash equilibria type theorems in topological ordered spaces, J. Math. Anal. Appl. 264 (2001), 262–269.

M. Marinacci, Ambiguous games, Games and Econom. Behav. 31 (2000), 191–219.

O.R. Nykyforchyn and M.M. Zarichnyi, Capacity functor in the category of compacta, Mat. Sb. 199 (2008), 3–26.

T. Radul, Convexities generated by L-monads, Appl. Categ. Structures 19 (2011), 729–739.

T. Radul, Nash equilibrium for binary convexities, Topol. Methods Nonlinear Anal. 48 (2016), 555–564.

T. Radul, Equilibrium under uncertainty with Sugeno payoff, Fuzzy Sets and Systems 349 (2018), 64–70.

T. Radul, Games in possibility capacities with payoff expressed by fuzzy integral, Fuzzy Sets and Systems 434 (2022), 185–197.

A. Rico, M. Grabisch, Ch. Labreuche and A. Chateauneuf, Preference modeling on totally ordered sets by the Sugeno integral, Discrete Appl. Math. 147 (2005), 113–124.

D. Schmeidler, Subjective probability and expected utility without additivity, Econometrica 57 (1989), 571–587.

F. Suarez, Familias de Integrales Difusas y Medidas de Entropia Relacionadas, Thesis, Universidad de Oviedo, Oviedo, 1983.

A. Teleiko and M. Zarichnyi, Categorical Topology of Compact Hausdorff Spaces, VNTL Publishers, Lviv, 1999.

M. van de Vel, Theory of Convex Strutures, North-Holland, 1993.

X. Vives, Nash equilibrium with strategic complementarities, J. Math. Econom. 19 (1990), 305–321.

Z. Wang and G.J. Klir, Generalized Measure Theory, Springer, New York, 2009.

S. Weber, Decomposable measures and integrals for Archimedean t-conorms, J. Math. Anal. Appl. 101 (1984), 114–138.

S. Weber, Two integrals and some modified versions — critical remarks, Fuzzy Sets and Systems 20 (1986), 97–105.

A. Wieczorek, The Kakutani property and the fixed point property of topological spaces with abstract convexity, J. Math. Anal. Appl. 168 (1992), 483–499.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-04-10

How to Cite

1.
RADUL, Taras. Equilibrium under uncertainty with fuzzy payoff. Topological Methods in Nonlinear Analysis. Online. 10 April 2022. Vol. 59, no. 2B, pp. 1029 - 1045. [Accessed 5 July 2025]. DOI 10.12775/TMNA.2021.049.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2B (June 2022)

Section

Articles

License

Copyright (c) 2022 Taras Radul

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop