Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

New fixed point theorems for sum operators in set $P_{h,e}$ and their applications to nonlinear fractional differential problems
  • Home
  • /
  • New fixed point theorems for sum operators in set $P_{h,e}$ and their applications to nonlinear fractional differential problems
  1. Home /
  2. Archives /
  3. Vol 59, No 2B (June 2022) /
  4. Articles

New fixed point theorems for sum operators in set $P_{h,e}$ and their applications to nonlinear fractional differential problems

Authors

  • Lingling Zhang
  • Huimin Tian

DOI:

https://doi.org/10.12775/TMNA.2021.008

Keywords

Mixed monotone operator, existence and uniqueness, fractional differential equations

Abstract

The paper presents several new fixed point theorems for some sum operators. Without any compactness or continuity assumptions, we establish sufficient conditions for some operators to have unique fixed points and describe sequences converging to the fixed points. The main results are obtained by the cone theory and monotone iterative technique. Besides, as applications, these new fixed point theorems are used to study the existence and uniqueness of solutions for a class of nonlinear fractional differential equations.

References

Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), 495–505.

D. Baleanu, J.A.T. Machado and A.C.J. Luo, Fractional Dynamics and Control, Springer, Berlin, 2012.

K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.

C.S. Goodrich, Existence of a positive solution to a class of fractional differential equations, Appl. Math. Lett. 23 (2010), 1050–1055.

C.S. Goodrich, Existence of a positive solution to systems of differential equations of fractional order, Comput. Math. Appl. 62 (2011), 1251–1268.

M. Jleli and B. Samet, Existence of positive solutions to an arbitrary order fractional differential equation via a mixed monotone operator method, Nonlinear Anal. Model. Control. 20 (2015), 367–376.

D. Guo and V. Lakskmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal. 11 (1987), 623–632.

J. Harjani, B. López, and K. Sadarangani, Fixed point theorems for mixed monotone operators and applications to integral equations, Nonlinear Anal. 74 (2011), 1749–1760.

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341–4349.

K. Li, J. Liang and T. Xiao, New existence and uniqueness theorems of positive fixed points for mixed monotone operators with perturbation, J. Math. Anal. Appl. 328 (2007), 753–766.

H. Wang and L.L. Zhang, The solution for a class of sum operator equation and its application to fractioal differential equation boundary value problems, Bound. Value Probl. 2015(2015), 203.

D. Wardowski, Mixed monotone operators and their application to integral equations, J. Fixed Point Theory Appl. 19 (2017), 1103–1117.

C.J. Yuan, Multiple positive solutions for (n−1, 1)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations, Electron. J. Qual. Theory Differ. Equ. 36 (2010), 1–12.

C.B. Zhai and M.R. Hao, Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems, Nonlinear Anal. 75 (2012), 2542–2551.

C.B. Zhai and L. Wang, ϕ − (h, e)-concave operators and applications, J. Math. Anal. Appl. 454 (2017), 571–584.

C.B. Zhai, W.P. Yan and C. Yang, A sum operator method for the existence and uniqueness of positive solutions to Riemann–Liouville fractional differential equation boundary value problems, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 858–866.

C.B. Zhai and L.L. Zhang, New fixed point theorems for mixed monotone operators and local existence-uniqueness of positive solutions for nonlinear boundary value problems, J. Math. Anal. Appl. 382 (2011), 594–614.

L.L. Zhang and H.M. Tian, Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations, Adv. Differ. Equ. 114 (2017), 1–19.

L.L. Zhang, H. Wang and X.Q. Wang, Fixed point results in set Ph,e with applications to fractional differential equations, Topol. Methods Nonlinear Anal. 54 (2019), 537–566.

X.Q. Zhang, L.S. Liu and Y.H. Wu, Fixed point theorems for the sum of three classes of mixed monotone operators and applications, Fixed Point Theory Appl. 2016 (2016), 49.

Z. Zhao, Existence and uniqueness of fixed points for some mixed monotone operators, Nonlinear Anal. 73 (2010), 1481–1490.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-04-10

How to Cite

1.
ZHANG, Lingling and TIAN, Huimin. New fixed point theorems for sum operators in set $P_{h,e}$ and their applications to nonlinear fractional differential problems. Topological Methods in Nonlinear Analysis. Online. 10 April 2022. Vol. 59, no. 2B, pp. 719 - 735. [Accessed 4 July 2025]. DOI 10.12775/TMNA.2021.008.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 2B (June 2022)

Section

Articles

License

Copyright (c) 2022 Lingling Zhang, Huimin Tian

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop