Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A heterogeneous diffusive logistic model with constant yield harvesting in $\mathbb{R^N}$ under strong growth rate
  • Home
  • /
  • A heterogeneous diffusive logistic model with constant yield harvesting in $\mathbb{R^N}$ under strong growth rate
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

A heterogeneous diffusive logistic model with constant yield harvesting in $\mathbb{R^N}$ under strong growth rate

Authors

  • Hossein Tehrani

DOI:

https://doi.org/10.12775/TMNA.2021.034

Keywords

Diffusive logistic equation, harvesting term, strong growth rate, whole space $\mathbb R^N$

Abstract

We study existence of positive solutions of the following heterogeneous diffusive logistic equation with a harvesting term, \begin{equation*} -\Delta u =\lambda a(x) u -b(x) u^2 - c h(x), \quad\text{in } \mathbb{R}^N,\qquad \lim_{|x|\rightarrow\infty}u(x)=0, \end{equation*} where $\lambda$ and $c$ are positive constant, $h(x)$, $b(x)$ are nonnegative and there exists a bounded region $\Omega_0$ such that $\overline{\Omega}_0 = \{ x : b(x)=0 \}$. Under the strong growth rate assumption, that is, when $\lambda \geq \lambda_1(\Omega_0)$, the first eigenvalue of weighted eigenvalue problem $-\Delta v=\mu a(x)v$ in $\Omega_0$ with Dirichlet boundary condition, we will show that if $h \equiv 0$ in $\mathbb{R}^N\setminus\overline{\Omega}_0$ then our equation has a unique positive solution for all $c$ large, provided that $\lambda$ is in a right neighborhood of $\lambda_1 (\Omega_0)$. In addition we prove a new result on the positive solution set of this equation in the weak growth rate case complimenting existing results in the literature.

References

W. Allegretto and P.O. Odiobala, Nonpositone elliptic problems in RN , Proc. Amer. Math. Soc. 123 (1995), no.] 2, 533–541.

S. Carl, D. Costa and H.T. Tehrani, D1,2 (RN ) versus C(RN ) local minimizer and a Hopf-type maximum principle, J. Differential Equations 261 (2016), no. 3, 2006–2025.

S. Carl, D. Costa and H.T. Tehrani, D1,2 (RN ) versus C(RN ) local minimizer on manifolds and multiple solutions for zero mass equations in RN , Adv. Calc. Var. 11 (2018), no. 3, 257–272.

Ph. Clément and L.A. Peletier, An anti-maximum principle for second-order elliptic operators, J. Differential Equations 34 (1979), no. 2, 218–229.

D.G. Costa, P. Drábek and H.T. Tehrani, Positive solutions to semilinear elliptic equations with logistic type nonlinearities and constant yield harvesting in RN , Comm. Partial Differential Equations 33 (2008), no. 7–9, 1597–1610.

E.N. Dancer, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl. 91 (1983), no. 1, 131–151.

D.G. de Figueiredo and J.-P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differentail Equations 17 (1992), no. 1–2, 339–346.

Y. Du and Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal. 31 (1999), no. 1, 1–18.

Y. Du and L. Ma, Positive solutions of an elliptic partial differential equation on RN , J. Math. Anal. Appl. 271 (2002), no. 2, 409–425.

Y. Du and Li Ma, Logistic type equations on RN by a squeezing method involving boundary blow-up solutions, J. London Math. Soc. (2) 64 (2001), no. 1, 107–124.

Y. Du and J. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc. 359 (2007), no. 9, 4557–4593.

D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer–Verlag, Berlin, 2001, reprint of the 1998 edition.

P. Girão and H. Tehrani, Positive solutions to logistic type equations with harvesting, J. Differential Equations 247 (2009), no. 2, 574–595.

P.M. Girão, Bifurcation curves of a logistic equation when the linear growth rate crosses a second eigenvalue, Nonlinear Anal. 74 (2011), no. 1, 94–113.

P.M. Girão and M. Pérez-Llanos, Bifurcation curves of a diffusive logistic equation with harvesting orthogonal to the first eigenfunction, J. Math. Anal. Appl. 403 (2013), no. 2, 376–390.

S. Oruganti and J. Shi and R. Shivaji, Diffusive logistic equation with constant yield harvesting I. Steady states, Trans. Amer. Math. Soc. 354 (2002), no. 9, 3601–3619 (electronic).

T. Ouyang, On the positive solutions of semilinear equations ∆u + λu − hup = 0 on the compact manifolds, Trans. Amer. Math. Soc. 331 (1992), no. 2, 503–527.

D.H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1971/72), 979–1000.

S. Shabani, Diffusive Holling type-II predator-prey system with harvesting of prey, J. Math. Anal. Appl. 410 (2014), no. 1, 469–482.

S. Shabani Rokn-e-vafa and H.T. Tehrani, Diffusive logistic equations with harvesting and heterogeneity under strong growth rate, Adv. Nonlinear Anal. 8 (2019), no. 1, 455–467.

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, fourth edition, Springer–Verlag, Berlin, 2008.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-13

How to Cite

1.
TEHRANI, Hossein. A heterogeneous diffusive logistic model with constant yield harvesting in $\mathbb{R^N}$ under strong growth rate. Topological Methods in Nonlinear Analysis. Online. 13 March 2022. Vol. 59, no. 1, pp. 385 - 408. [Accessed 8 July 2025]. DOI 10.12775/TMNA.2021.034.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Hossein Tehrani

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop