Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

A characterization of nonautonomous attractors via Stone-Čech compactification
  • Home
  • /
  • A characterization of nonautonomous attractors via Stone-Čech compactification
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

A characterization of nonautonomous attractors via Stone-Čech compactification

Authors

  • Josiney A. Souza https://orcid.org/0000-0002-7688-774X
  • Pedro F. S. Othechar https://orcid.org/0000-0002-4429-5205

DOI:

https://doi.org/10.12775/TMNA.2021.029

Keywords

Nonautonomous dynamical system, past attractor, Stone-Čech compactification

Abstract

The present paper deals with the notions of past attractors and repellers for nonautonomous dynamical systems. This uses the topological method of extending functions in order to describe the nonautonomous attractors by means of the prolongational limit sets in the extended phase space. Essentially, for a given nonautonomous dynamical system $(\theta ,\varphi ) $ with base set $P=\mathbb{T}$, where $\mathbb{T}$ is the time $\mathbb{Z}$ or $\mathbb{R}$, and with base flow $\theta $ as the addition, the limit sets $\omega ^{-}( 0) $ and $\omega^{+}( 0) $ in the Stone-Čech compactification $\beta \mathbb{T}$ determine respectively the past and the future of the conduction system.

References

N.P. Bhatia and G.P. Szego, Stability Theory of Dynamical Systems, Springer–Verlag, Berlin, Heidelberg, 1970.

N. Bourbaki, Éléments de mathématique: Topologie générale, Chapter 5 à 10, Springer, 2007.

C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in Math., Vol. 38, American Mathematical Society, Providence, 1978.

D.B. Ellis, R. Ellis and M. Nerurkar, The topological dynamics of semigroup actions, Trans. Amer. Math. Soc. 353 (2000), no. 14, 1279–1320.

R. Ellis, Lectures on Topological Dynamics, W.A. Benjamin, Inc., New York, 1969.

R. Ellis and R.A. Johnson, Topological dynamics and linear differential equations, J. Differential Equations 44 (1982), 21–39.

F. Flandoli and B. Schmalfuss, Random attractors for the 3-D stochastic Navier–Stokes equation with multiplicative White noise, Stochastics and Stochastic Reports 59 (1996), no. 1–2, 21–45.

I. Glicksberg, Stone–Čech Compactifications of Products (M. Katetov and P. Simon, eds), The Mathematical Legacy of Eduard Čech, Birkhäuser, Basel, 1993.

P.E. Kloeden, A Lyapunov function for pullback attractors of nonautonomous differential equations, Conference 05, Electron. J. Differential Equations, 2000, pp. 91–102.

P.E. Kloeden, H. Keller and B. Schmalfuss, Towards a Theory of Random Numerical Dynamics, Stochastic Dynamics (H. Crauel and M. Gundlach, eds.), Springer, Berlin, Heidelberg, New York, 1999.

P.E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc. 144 (2016), 259–268.

P.E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, vol. 176, AMS, Providence, R.I., 2011.

M. Rasmussen, Morse decompositions of nonautonomous dynamical systems, Trans. Amer. Math. Soc. 353 (2000), no. 4, 1279–1320.

J.A. Souza, Chain recurrence in β-compactifications of topological groups, Groups Geom. Dyn. 5 (2011), 475–493.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-06

How to Cite

1.
SOUZA, Josiney A. and OTHECHAR, Pedro F. S. A characterization of nonautonomous attractors via Stone-Čech compactification. Topological Methods in Nonlinear Analysis. Online. 6 March 2022. Vol. 59, no. 1, pp. 261 - 275. [Accessed 29 June 2025]. DOI 10.12775/TMNA.2021.029.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Josiney A. Souza, Pedro F. S. Othechar

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop