Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Hopf bifurcation in a diffusive predator-prey model with a square-root singularity
  • Home
  • /
  • Hopf bifurcation in a diffusive predator-prey model with a square-root singularity
  1. Home /
  2. Archives /
  3. Vol 59, No 1 (March 2022) /
  4. Articles

Hopf bifurcation in a diffusive predator-prey model with a square-root singularity

Authors

  • Rasoul Asheghi

DOI:

https://doi.org/10.12775/TMNA.2021.024

Keywords

Hopf bifurcation, reaction-diffusion system, predator-prey model, square-root singularity

Abstract

In this paper, stability and Hopf bifurcation in a diffusive predator-prey system are discussed considering prey species' group behavior. The interaction term is of Holling type II with the prey density X under the square root. The local behavior is first discussed for the corresponding homogeneous system. Then, the diffusive system's linear stability is discussed around a homogeneous equilibrium state followed by bifurcations in the infinite-dimensional system. By the linear stability analysis, we see that a Hopf bifurcation occurs in the homogeneous system. By choosing a proper bifurcation parameter, we prove that a Hopf bifurcation occurs in the nonhomogeneous system. Furthermore, the direction of the Hopf bifurcation is obtained.

References

V. Ajraldi, M. Pittavino and E. Venturino, Modeling Herd behavior in population systems, Nonlinear Anal. Real World Appl. 12 (2011), 2319–2338.

V. Ajraldi and E. Venturino, Mimicking spatial effects in predator-prey models with group defense, Proceedings of the 2009 International Conference on Computational and Mathematical Methods in Science and Engineering 1 (2009), 57–67.

I. Boudjema and S. Djilali, Turing–Hopf bifurcation in Gauss-type model with crossdiffusion and its application, Nonlinear Stud. 25 (2018), 665–687.

P.A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. Real World. Appl. 13 (2012), 1837–43.

S. Djilali, Herd behavior in a predator-prey model with spatial diffusion: bifurcation analysis and Turing instability, J. Appl. Math. Comput. 58 (2018), 125–149.

S. Djilali, Impact of prey herd shape on the predator-prey interaction, Chaos Solitons Fractals 120 (2019), 139–148.

M. Haragus and G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext, Springer, London, Dordrecht, Heidelberg, New York, 2011.

A.J. Lotka, Relation between birth rates and death rates, Adv. Science 26 (1907), 21–22.

A.J. Lotka, Elements of Mathematical Biology, Dover, New York, 1956.

Y. Song and X. Tang, Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis, Stud. Appl. Math. 139 (2017), 371–404.

Y. Song, T. Yin and H. Shu, Dynamics of a ratio-dependent stage-structured predatorprey model with delay, Math. Methods Appl. Sci. 40 (2017), 6451–6467.

X. Tang and Y. Song, Bifurcation analysis and Turing instability in a diffusive predatorprey model with herd behavior and hyperbolic mortality, Chaos Solitons Fractals 81 (2015), 303–314.

E. Venturino, A minimal model for ecoepidemics with group defense, J. Biol. Syst. 19 (2011), 763–785.

E. Venturino and S. Petrovskiı̆, Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecol. Compl. 14 (2013), 37–47.

V. Volterra, Sui tentutive di applicazione delle mathematiche alle seienze biologiche e sociali, Ann. Radioelectr. Univ. Romandes 23 (1901), 436–458.

V. Volterra, La Concorrenza Vitale Tra le Specie Nellámbiente Marino, Soc. Nouv. Delı́mpr. du Loiret, 1931.

X.P. Yan, Stability and Hopf bifurcation for a delayed prey-predator system with diffusion effects, Appl. Math. Comp. 192 (2007), 552–566.

S. Yuan, C. Xu and T. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos 23 (2013), 033102.

X.C. Zhang, G.Q. Sun and Z. Jin, Spatial dynamics in a predator-prey model with Beddington–DeAngelis functional response, Phys. Rev. E 85 (2012), 0219241–02192414.

W.J. Zuo and J.J. Wei, Stability and bifurcation in a ratio-dependent Holling III system with diffusion and delay, Nonlinear Anal. Model. Control 19 (2014), 132–153.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2022-03-06

How to Cite

1.
ASHEGHI, Rasoul. Hopf bifurcation in a diffusive predator-prey model with a square-root singularity. Topological Methods in Nonlinear Analysis. Online. 6 March 2022. Vol. 59, no. 1, pp. 193 - 220. [Accessed 8 December 2025]. DOI 10.12775/TMNA.2021.024.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 59, No 1 (March 2022)

Section

Articles

License

Copyright (c) 2022 Rasoul Asheghi

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop