Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions for systems of functional-differential semilinear equations at resonance
  • Home
  • /
  • Periodic solutions for systems of functional-differential semilinear equations at resonance
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

Periodic solutions for systems of functional-differential semilinear equations at resonance

Authors

  • Pablo Amster https://orcid.org/0000-0003-2829-7072
  • Julián Epstein
  • Arturo Sanjuán Cuéllar https://orcid.org/0000-0002-0309-8299

DOI:

https://doi.org/10.12775/TMNA.2020.078

Keywords

Periodic solutions, functional-differential equations, Lazer-Leach conditions, coincidence degree

Abstract

Motivated by Lazer-Leach type results, we study the existence of periodic solutions for systems of functional-differential equations at resonance with an arbitrary even-dimensional kernel and linear deviating terms involving a general delay of the form $\int_0^{2\pi}u(t+s)d\lambda(s)$, where $\lambda$ is a finite regular signed measure. Our main technique shall be the Coincidence Degree Theorem due to Mawhin.

References

P. Amster, A. Déboli and M.P. Kuna, Lazer–Leach conditions for coupled Gompertzlike de-layed systems, Appl. Math. Lett. 83 (2018), 53–58.

P. Amster and P. De Nápoli, On a generalization of Lazer–Leach conditions for a system of second order ODE’s, Topol. Methods Nonlinear Anal. 33 (2009), no. 1, 31–39.

X. Fu and S. Zhang, Periodic solutions for differential equations at resonance with unbounded nonlinearities, Nonlinear Anal. 52 (2003), no. 3, 755–767.

A.C. Lazer, On Schauder’s fixed point theorem and forced second-order nonlinear oscillations, J. Math. Anal. Appl. 21 (1968), no. 2, 421–425.

A.C. Lazer and D.E. Leach, Bounded perturbations of forced harmonic oscillators at resonance, Ann. Mat. Pura Appl. 82 (1969), no. 4, 49–68.

S. Ma, Z. Wang and J. Yu, An abstract existence theorem at resonance and its applications, J. Differential Equations 145 (1998), no. 2, 274–294.

J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differential Equations 12 (1972), 610–636.

F.L. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, Algebra i Analiz 5 (1993), no. 4, 3–66.

L. Nirenberg, Generalized degree and nonlinear problems, Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press, New York, 1971, pp. 1–9.

K. Wang and S. Lu, On the existence of periodic solutions for a kind of high-order neutral functional differential equations. J. Math. Anal. Appl 326 (2007), no. 2, 1161–1173.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-05

How to Cite

1.
AMSTER, Pablo, EPSTEIN, Julián and SANJUÁN CUÉLLAR, Arturo. Periodic solutions for systems of functional-differential semilinear equations at resonance. Topological Methods in Nonlinear Analysis. Online. 5 December 2021. Vol. 58, no. 2, pp. 591 - 607. [Accessed 6 July 2025]. DOI 10.12775/TMNA.2020.078.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Pablo Amster, Julián Epstein, Arturo Sanjuán Cuéllar

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop