Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Fixed point results for generalized nonexpansive and Suzuki mappings with application in $L^{1}(\Omega, \Sigma, \mu)$
  • Home
  • /
  • Fixed point results for generalized nonexpansive and Suzuki mappings with application in $L^{1}(\Omega, \Sigma, \mu)$
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

Fixed point results for generalized nonexpansive and Suzuki mappings with application in $L^{1}(\Omega, \Sigma, \mu)$

Authors

  • Abdelkader Dehici
  • Najeh Redjel
  • Sami Atailia https://orcid.org/0000-0001-7036-8984

DOI:

https://doi.org/10.12775/TMNA.2021.021

Keywords

Metric space, Suzuki mapping, generalized nonexpansive mapping, Banach space, dual Banach space, fixed point, orthogonality, approximately symmetric orthogonality, weak$^{\star}$ approximately symmetric orthogonality, uniformly approximately symmetric orthogonality, uniformly weak$^{\star}$ approximately symmetric orthogonality, almost fixed point sequence, weakly compact convex subset, weak$^{\star}$ compact convex subset, Banach space $L^{1}(\Omega, \Sigma, \mu)$, $L^{0}$-closed

Abstract

It is natural to ask whether the weak fixed point property for nonexpansive mappings in Banach spaces is inherited by other generalized nonexpansive mappings without using weak normal structure or close-to normal structure (also called quasi-normal structure) (see C.S. Wong, {\it Close-to-normal structure and its applications}, J. Func. Anal. {\bf 16} (1974), no.\ 4, 353-358). In this paper, we give an affirmative answer to this question for Suzuki mappings and other generalized nonexpansive mappings in the setting of various Banach spaces. In addition, we prove the existence of common fixed points for commuting affine $(c)$-mappings and Suzuki mappings acting on convex bounded $L^{0}$-closed subsets in the Banach space $L^{1}(\Omega, \Sigma, \mu)$.

References

D. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), 423–424.

S. Atailia, N. Redjel and A. Dehici, Some fixed point results for generalized contractions of Suzuki type in Banach spaces, J. Fixed Point Theory Appl. 21 (2019), DOI: 10.1007/s11784-019-0717-8.

J.S. Bae, Fixed point theorems of generalized nonexpansive maps, J. Korean. Math. Soc. 21 (1984), no. 2, 233–248.

L.P. Belluce, W.A. Kirk and E.F. Steiner, Normal structure in Banach spaces, Pacific. J. Math. 26 (1968), 433–440.

M. Besbes, Points fixes des contractions définies sur un convex L0 -fermé de L1 , C.R. Acad. Sci. Paris. 311(1990), no. 1, 243–246.

M. Besbes, Points fixes et théorèmes ergodiques dans les espaces L1 (E), Stud. Math. 103 (1992), no. 1, 79–97.

A. Betiuk-Pilarska and T. Dominguez Benavides, The fixed point property for some generalized nonexpansive mappings and renormings, J. Math. Anal. Appl. 429 (2015), 800–813.

A. Betiuk-Pilarska and A. Wisnicki, On the Suzuki nonexpansive-type mappings, Ann. Funct. Anal. 4 (2013), no. 2, 72–86.

G. Birkhoff, Orthogonality in linear metric spaces, Duck. Math. J., 1 (1935), 169-172.

J. Bogin, A generalization of a fixed point theorem of Goebel, Kirk and Shimi, Canad. Math. Bull. 19 (1976), no. 1, 7–12.

A.V. Bukhvalov, Optimization without compactness, and its applications, Operator Theory, Advances and Applications, vol. 75, Birkhäuser Verlag, Basel, Switzerland, 1995, pp. 95–112.

S. Dhompongsa, W. Inthakon and A. Kaewkhao, Edelstein’s method and fixed point theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 350 (2009), 12–17.

J. Garcı́a-Falset, E. Llorens-Fuster and E. Moreno Gálvez, Fixed point theory for multivalued generalized nonexpansive mappings, Appl. Anal. Discrete. Math. 6 (2012), 265–286.

J. Garcı́a-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), 185–195.

K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, first edition, 1990.

K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.

G.E. Hardy and T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201–206.

L.A. Karlovitz, On nonexpansive mappings, Proc. Amer. Math. Soc., 55 (1976), no. 2, 321–325.

W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly. 72 (1965), no. 9, 1004–1006.

A.T.-M. Lau, Invariant means and fixed point properties of semigroup of nonexpansive mappings, Taiwanese. J. Math. 12 (2008), no. 6, 1525–1542.

A.T.-M. Lau and W. Takahashi, Weak convergence and nonlinear ergodic theorems for reversible semigroups of nonexpansive mappings, Pacific. J. Math. 126 (1987), no. 2, 277–294.

A.T.-M. Lau and W. Takahashi, Invariant means and semigroups of nonexpansive mappings on uniformly convex Banach spaces, J. Math. Anal. Appl. 153 (1990), no. 2, 497–505.

A.T.-M. Lau and C.S. Wong, Common fixed points for semigroups of mappings, Proc. Amer. Math. Soc. 41 (1973), no. 1, 223–228.

E. Llorens-Fuster and E. Moreno Gálvez, The fixed point theory for some generalized nonexpansive mappings, Abstr. Appl. Anal. 2011, Article ID 435686, 15 pp.

S. Reich, Kannan’s fixed point theorem, Boll. Un. Math. Ital. 4 (1971), 1–11.

S. Reich, Fixed points of contractive functions, Boll. Un. Math. Ital. 5 (1972), 26–42.

B. Sims, A support map characterization of the Opial conditions, Proc. Centre Math. Anal. Austral. Nat. Univ. 9 (1985), 259–264.

M.A. Smyth, The fixed point problem for generalized nonexpansive maps, Bull. Austral. Math. Soc. 55 (1997), 45–61.

T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), 1088–1095.

K.K. Tan, A note on asymptotic normal structure and close-to-normal structure, Canad. Math. Bull. 25 (1982), no. 3, 339–343.

C.S. Wong, Close-to-normal structure and its applications, J. Func. Anal. 16 (1974), no. 4, 353–358.

C.S. Wong, On Kannan maps, Proc. Amer. Math. Soc. 47 (1975), no. 1, 105–111.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-02

How to Cite

1.
DEHICI, Abdelkader, REDJEL, Najeh and ATAILIA, Sami. Fixed point results for generalized nonexpansive and Suzuki mappings with application in $L^{1}(\Omega, \Sigma, \mu)$. Topological Methods in Nonlinear Analysis. Online. 2 December 2021. Vol. 58, no. 2, pp. 641 - 656. [Accessed 28 June 2025]. DOI 10.12775/TMNA.2021.021.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Abdelkader Dehici, Najeh Redjel, Sami Atailia

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop