Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

The Borsuk-Ulam property for maps from the product of two surfaces into a surface
  • Home
  • /
  • The Borsuk-Ulam property for maps from the product of two surfaces into a surface
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

The Borsuk-Ulam property for maps from the product of two surfaces into a surface

Authors

  • Daciberg Lima Gonçalves https://orcid.org/0000-0003-4032-7078
  • Anderson Paião dos Santos https://orcid.org/0000-0001-5613-8808
  • Weslem Liberato Silva https://orcid.org/0000-0001-9351-3240

DOI:

https://doi.org/10.12775/TMNA.2021.020

Keywords

Borsuk-Ulam theorem, involutions, surface braid groups, surface

Abstract

Let $X$, $Y$, $S$ be closed connected surfaces and $\tau \times \beta$ a diagonal involution on $X \times Y$ where $\tau$ and $\beta$ are free involutions on $X$ and $Y$, respectively. In this work we study when the triple $(X \times Y, \tau \times \beta, S)$ satisfies the {\it Borsuk-Ulam property}. The problem is formulated in terms of an algebraic diagram, involving the 2-string braid group $B_{2}(S)$.

References

K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177–190.

E. Fadell and S. Husseini, The Nielsen number on surfaces, Contemp. Math. 21 (1983), 59–98.

D.L. Gonçalves and J. Guaschi, The Borsuk–Ulam theorem for maps into a surface, Topology Appl. 157 (2010), 1742–1759.

D.L. Gonçalves, J. Guaschi and V.C. Laass, The Borsuk–Ulam property for homotopy classes of selfmaps of surfaces of Euler characteristic zero, J. Fixed Point Theory Appl. (2019), 21–65.

D.L. Gonçalves, C. Hayat and P. Zvengrowski, The Borsuk–Ulam theorem for manifolds, with applications to dimensions two and three, Groups Actions and Homogeneous Spaces, Fak. Mat. Fyziky Inform. Univ. Komenskéko, Bratislava, 9–28, 2010.

D.L. Gonçalves and A.P. Santos, Diagonal involutions and the Borsuk–Ulam property for product of surfaces, Bull. Braz. Math. Soc. (N.S.) 50 (2019), no. 3, 771–786.

D.L. Johnson, Presentation of Groups, London Math. Soc. Lecture Note Ser., vol. 22, Cambrige Uni. Press, 1976.

W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory: presentations of groups in terms of generators and relations, Pure and Applied Mathematics: A series of texts and monographs, vol. XIII, Interscience Publishers, 1966.

T. tom Dieck, Transformation Groups, Walter de Gruyter, Berlin, New York, 1987

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-02

How to Cite

1.
GONÇALVES, Daciberg Lima, DOS SANTOS, Anderson Paião and SILVA, Weslem Liberato. The Borsuk-Ulam property for maps from the product of two surfaces into a surface. Topological Methods in Nonlinear Analysis. Online. 2 December 2021. Vol. 58, no. 2, pp. 367 - 388. [Accessed 17 December 2025]. DOI 10.12775/TMNA.2021.020.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Daciberg Lima Gonçalves, Ederson Paião dos Santos, Weslem Liberato Silva

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop