Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Rate of convergence of global attractors for some perturbed reaction-diffusion equations under smooth perturbations of the domain
  • Home
  • /
  • Rate of convergence of global attractors for some perturbed reaction-diffusion equations under smooth perturbations of the domain
  1. Home /
  2. Archives /
  3. Vol 58, No 2 (December 2021) /
  4. Articles

Rate of convergence of global attractors for some perturbed reaction-diffusion equations under smooth perturbations of the domain

Authors

  • Leonardo Pires https://orcid.org/0000-0001-9414-7748
  • Rodrigo A. Samprogna https://orcid.org/0000-0002-0997-5344

DOI:

https://doi.org/10.12775/TMNA.2020.074

Keywords

Attractors, domain perturbation, rate of attraction, reaction diffusion equations

Abstract

In this paper we obtain a rate of convergence for the asymptotic behavior of some semilinar parabolic problems with Dirichlet boundary conditions relatively to smooth perturbations of the domain. We will obtain a rate of convergence dependent on convergence of domains for eigenvalues, eigenfunctions, invariant manifolds and continuity of attractors.

References

E.A.M. Abreu and A.N. Carvalho, Lower semicontinuity of attractors for parabolic problems with Dirichlet boundary conditons in varying domains, Matemática Contemporânea 27 (2004), 37–51.

J.M. Arrieta, F.D.M. Bezerra and A. N. Carvalho, Rate of convergence of Attractors for some singular perturbed parabolic problems, Topol. Methods Nonlinear Anal. 41 (2013), 229–253.

J.M. Arrieta and A.N. Carvalho, Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain, J. Differential Equations 199 (2004), 143–178.

J.M. Arrieta, A.N. Carvalho and A. Rodrı́guez-Bernal, Attractors for parabolic problems with nonlinear boundary bondition. Uniform bounds, Comm. Partial Differential Equations 25 (2000), 1–37.

A.N. Carvalho, J.A. Langa and J.C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, London, 2010.

A.N. Carvalho and L. Pires, Rate of convergence of attractors for singularly perturbed semilinear problems, J. Math. Anal. Appl. 452 (2017), 258–296.

A.N. Carvalho and L. Pires, Parabolic equations with localized large diffusion: rate of convergence of attractors, Topol. Methods Nonlinear Anal. 53 (2019), 1–23.

E.N. Dancer and D. Daners, Domain perturbation of elliptic equations subject to Robin boundary conditions, J. Differential Equations 74 (1997), 86–132.

D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Springer–Verlag, New York, 1980.

D. Henry, Perturbation of the Boundary in Partial Differential Equations, Cambridge University Press, Cambridge, 1996.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-12-02

How to Cite

1.
PIRES, Leonardo and SAMPROGNA, Rodrigo A. Rate of convergence of global attractors for some perturbed reaction-diffusion equations under smooth perturbations of the domain. Topological Methods in Nonlinear Analysis. Online. 2 December 2021. Vol. 58, no. 2, pp. 441 - 452. [Accessed 16 December 2025]. DOI 10.12775/TMNA.2020.074.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 2 (December 2021)

Section

Articles

License

Copyright (c) 2021 Leonardo Pires, Rodrigo A. Samprogna

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop