Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Nonlinear perturbations of a periodic fractional Laplacian with supercritical growth
  • Home
  • /
  • Nonlinear perturbations of a periodic fractional Laplacian with supercritical growth
  1. Home /
  2. Archives /
  3. Vol 58, No 1 (September 2021) /
  4. Articles

Nonlinear perturbations of a periodic fractional Laplacian with supercritical growth

Authors

  • Giovany M. Figueiredo https://orcid.org/0000-0003-1697-1592
  • Sandra I. Moreira
  • Ricardo Ruviaro https://orcid.org/0000-0002-3255-2446

DOI:

https://doi.org/10.12775/TMNA.2020.073

Keywords

Variational methods, supercritical exponent, fractional equation

Abstract

Our main goal is to explore the existence of positive solutions for a class of nonlinear fractional Schrödinger equation involving supercritical growth given by $$ (- \Delta)^{\alpha} u + V(x)u=p(u),\quad x\in \mathbb{R^N},\ N \geq 1. $$ We analyze two types of problems, with $V$ being periodic and asymptotically periodic; for this we use a variational method, a truncation argument and a concentration compactness principle.

References

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis. 14 (1973), 349–381.

C.O. Alves, P.C. Carrião and O.H. Miyagaki, Nonlinear perturbations of a periodic elliptic problem with critical growth, J. Math. Anal. Appl. 260 (2001), 133–146.

C.O. Alves and G.M. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff equation in RN , Nonlinear Anal. 75 (2012), 2750–2759.

C.O. Alves, S.H.M. Soares and M.A.S. Souto, Schrödinger–Poisson equations with supercritical growth, Eletron. J. Differ. Equ. 1 (2011), 1–11.

V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Annali di Matematica 196 (2017), 2043–2062.

G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in RN , J. Differential Equations. 225 (2013), 2340–2362.

C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A. 143 (2013), 39–71.

L.A. Caffarelli and L. Silvestre, An extension problems related to the fractional Laplacian, Comm. Partial Differential Equations 36 (2007), 1245–1260.

M. Del Pino and P.L. Felmer, Local mountain pass for semilinear elliptic in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121–137.

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull Sci Math. 136 (2012), 521–573.

J.M. do Ó, O.H. Miyagaki and M. Squassina, Critical and subcritical fractional problems with vanishing potentials, Commun. Contemp. Math. 18 (2016), 1550063, 20 pp.

G.M. Figueiredo, O.H. Miyagaki and S.I. Moreira, Nonlinear perturbations of a periodic Schrödinger equation with supercritical growth, Z. Angew. Math. Phys. 66 (2016), 2379–2394.

O. Kavian, Introduction à la Théorie des Points Critiques et Applications aux Problèms Elliptiques, Springer, New York, Berlin, 1994.

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A. 268 (2000), 298–305.

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E 66 (2002), 056108, 7 pp.

G. Li and C. Wang, The existence of a nontrivial solution to p-Laplacian equations in RN with supercritical growth, Math. Methods Appl. Sci. 36 (2013), 69–79.

Q. Li, K. Teng, X. Wu and W. Wang, Existence of nontrivial solutions for fractional Schrödinger equations with critical or supercritical growth, Math. Methods Appl. Sci. 42 (2019), 1480–1487.

P.L. Lions, The concentration-compacteness principle in the calculus of variations. The locally compact case, Part II, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 223–283.

G. Molica Bisci, V.D. Rădulescu A and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Cambridge University, 2016.

J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457–468.

M. Souza and Y.L. Araújo, A class of asymptotically periodic fractional Schrödinger equations with critical growth, Commun. Contemp. Math. 3 (2018), 1750011, 31 pp.

M. Xiang, B. Zhang and V.R. Rădulescu, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations 260 (2016), 1392–1413.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-09-12

How to Cite

1.
FIGUEIREDO, Giovany M., MOREIRA, Sandra I. and RUVIARO, Ricardo. Nonlinear perturbations of a periodic fractional Laplacian with supercritical growth. Topological Methods in Nonlinear Analysis. Online. 12 September 2021. Vol. 58, no. 1, pp. 335 - 349. [Accessed 5 July 2025]. DOI 10.12775/TMNA.2020.073.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 58, No 1 (September 2021)

Section

Articles

License

Copyright (c) 2021 Topological Methods in Nonlinear Analysis

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop