Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Small perturbations of Robin problems driven by the $p$-Laplacian plus a positive potential
  • Home
  • /
  • Small perturbations of Robin problems driven by the $p$-Laplacian plus a positive potential
  1. Home /
  2. Archives /
  3. Vol 57, No 2 (June 2021) /
  4. Articles

Small perturbations of Robin problems driven by the $p$-Laplacian plus a positive potential

Authors

  • Anouar Bahrouni https://orcid.org/0000-0002-5465-4064
  • Vicenţiu D. Rădulescu
  • Patrick Winkert

Keywords

Quasilinear problem, Robin boundary condition, indefinite potential, small perturbation, existence of solution, variational methods

Abstract

We consider a quasilinear Robin problem driven by the $p$-Laplacian plus a positive potential and with a small perturbation. We assume that the main term in the equation has an Ekeland structure but we do not suppose any growth condition for the perturbation term. Applying variational methods, we prove the existence of at least one nontrivial weak solution.

References

G. Anello and G. Cordaro, Three solutions for a perturbed sublinear elliptic problem in RN , Glasg. Math. J. 47 (2005), no. 1, 205–212.

A. Bahrouni, H. Ounaies and V. D. Rădulescu, Compactly supported solutions of Schrödinger equations with small perturbation, Appl. Math. Lett. 84 (2018), 148–154.

A. Bahrouni, H. Ounaies and V. D. Rădulescu, Bound state solutions of sublinear Schrödinger equations with lack of compactness, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RACSAM 113 (2019), no. 2, 1191–1210.

A. Bahrouni, V. D. Rădulescu and P. Winkert, A critical point theorem for perturbed functionals and low perturbations of differential and momlocal systems, Adv. Nonlinear Stud. 20 (2020), 663–674.

I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353.

J.V.A. Gonçalves and O.H. Miyagaki, Three solutions for a strongly resonant elliptic problem, Nonlinear Anal. 24 (1995), no. 2, 265–272.

R. Kajikiya, Positive solutions of semilinear elliptic equations with small perturbations, Proc. Amer. Math. Soc. 141 (2013), no. 4, 1335–1342.

N.S. Papageorgiou and V.D. Rădulescu, Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities, Discrete Contin. Dyn. Syst. 35 (2015), no. 10, 5003–5036.

N.S. Papageorgiou and V.D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations 256 (2014), no. 7, 2449–2479.

N.S. Papageorgiou and V.D. Rădulescu, Positive solutions for perturbations of the eigenvalue problem for the Robin p-Laplacian, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 255–277.

N.S. Papageorgiou and P. Winkert, Solutions with sign information for nonlinear nonhomogeneous problems, Math. Nachr. 292 (2019), no. 4, 871–891.

C. Vetro, Semilinear Robin problems driven by the Laplacian plus an indefinite potential, Complex Var. Elliptic Equ. 65 (2020), no. 4, 573–587.

X.J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations 93 (1991), no. 2, 283–310.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2021-05-25

How to Cite

1.
BAHROUNI, Anouar, RĂDULESCU, Vicenţiu D. and WINKERT, Patrick. Small perturbations of Robin problems driven by the $p$-Laplacian plus a positive potential. Topological Methods in Nonlinear Analysis. Online. 25 May 2021. Vol. 57, no. 2, pp. 663 - 673. [Accessed 15 November 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 57, No 2 (June 2021)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop