Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Positive solutions of semipositone elliptic problems with critical Trudinger-Moser nonlinearities
  • Strona domowa
  • /
  • Positive solutions of semipositone elliptic problems with critical Trudinger-Moser nonlinearities
  1. Strona domowa /
  2. Archiwum /
  3. Vol 55, No 1 (March 2020) /
  4. Articles

Positive solutions of semipositone elliptic problems with critical Trudinger-Moser nonlinearities

Autor

  • Kanishka Perera
  • Inbo Sim https://orcid.org/0000-0002-1618-054X

Słowa kluczowe

Semipositone $N$-Laplacian problems, critical Trudinger-Moser nonlinearities, positive solutions, uniform $C^{1, \alpha}$ a priori estimates

Abstrakt

We prove the existence of a positive solution to a semipositone $N$-Laplacian problem with a critical Trudinger-Moser nonlinearity. The proof is based on obtaining uniform $C^{1,\alpha}$ a priori estimates via a compactness argument. Our result is new even in the semilinear case $N = 2$, and our arguments can easily be adapted to obtain positive solutions of more general semipositone problems with critical Trudinger-Moser nonlinearities.

Bibliografia

Adimurthi,Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 3, 393–413.

D.G. de Figueiredo, J.M. do Ó and B. Ruf, Elliptic equations and systems with critical Trudinger–Moser nonlinearities, Discrete Contin. Dyn. Syst. 30 (2011), no. 2, 455–476.

D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 3 (1995), no. 2, 139–153.

D.G. de Figueiredo, O.H. Miyagaki and B. Ruf, Corrigendum: “Elliptic equations in R2 with nonlinearities in the critical growth range”, Calc. Var. Partial Differential Equations 4 (1996), no. 2, p. 203.

J.M.B. do Ó, Semilinear Dirichlet problems for the N -Laplacian in RN with nonlinearities in the critical growth range, Differential Integral Equations 9 (1996), no. 5, 967–979.

M. Guedda and L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), no. 8, 879–902.

G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203–1219.

P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441–467.

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case I, Rev. Mat. Iberoam. 1 (1985), no. 1, 145–201.

J. Moser A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/1971), 1077–1092.

N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483.

J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202.

Y. Yang and K. Perera, N -Laplacian problems with critical Trudinger–Moser nonlinearities, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 4, 1123–1138.

Pobrania

  • PREVIEW (English)
  • FULL TEXT (English)

Opublikowane

2020-03-07

Jak cytować

1.
PERERA, Kanishka & SIM, Inbo. Positive solutions of semipositone elliptic problems with critical Trudinger-Moser nonlinearities. Topological Methods in Nonlinear Analysis [online]. 7 marzec 2020, T. 55, nr 1, s. 243–255. [udostępniono 7.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 55, No 1 (March 2020)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa