Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Some two-point problems for second order integro-differential equations with argument deviations
  • Home
  • /
  • Some two-point problems for second order integro-differential equations with argument deviations
  1. Home /
  2. Archives /
  3. Vol 54, No 2 (December 2019) /
  4. Articles

Some two-point problems for second order integro-differential equations with argument deviations

Authors

  • Sulkhan Mukhigulashvili https://orcid.org/0000-0001-6321-4549
  • Veronika Novotná

Keywords

Integro-differential equations, Dirichlet and mixed problems, unique solvability, a priori boundedness principle

Abstract

In the paper we describe the classes of unique solvability of the Dirichlet and mixed two point boundary value problems for the second order linear integro-differential equation $$ u''(t)=p_0(t)u(t)+p_1(t)u(\tau_1(t))+\int_{a}^{b}p(t,s)u(\tau(s))ds+ q(t). $$% On the basis of the obtained and, in some sense, optimal results for the linear problems, by the a priori boundedness principle we prove the theorems of solvability and unique solvability for the second order nonlinear functional differential equations under the mentioned boundary conditions.

References

R.P. Agarwal, Boundary value problems for higher order integro-differential equations, Nonlinear Anal. 7 (1983), 259–270.

R.P. Agarwal, L. Berezansky, E. Braverman and A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York, 2012.

D. Bainov, A. Domoshnitsky, Theorems on differential inequalities for second order functional-differential equations, Glas. Mat. 29 (1994), 275–289.

E.I. Bravyi, On the solvable sets of boundary value problems for linear functional differential equations, Math. Bohem. 136 (2011), 145–154.

A. Domoshnitsky and G. Landsman, Semi-nonoscillation Intervals in Analysis of Sign Constancy of Green’s Functions of Dirichlet, Neumann and Focal Problems, Adv. Difference Equ. 81 (2017), 1–14.

R. Hakl and M. Zamora, Existence of a solution to the Dirichlet problem associated to a second-order differential equation with singularities: The method of lower and upper functions, Georgian Math. J. 20 (2013), 469–491.

G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridg University Press, 1951.

I.T. Kiguradze, On boundary value problems for systems of ordinary differential equations, J. Sov. Math. 43 (1987), 2259–2339.

I.T. Kiguradze and B. Půža, On boundary value problems for functional differential equations, Mem. Differ. Equ. Math. Phys. 12 (1997), 106–113.

E. Liz and J.J. Nieto, Boundary value problems for second order integro-differential equations of Fredholm type, J. Comput. Appl. Math. 72 (1996), 215–225.

J. Morchalo, On Two-point Boundary Value Problems for Integro-differential Equations of second order, Fasc. Math. 9 (1975), 51–56.

S. Mukhigulashvili, N. Partsvania and B. Půza, On a periodic problem for higherorder differential equations with a deviating argument, Nonlinear Anal. 74 (2011), 3232–3241.

B.G. Pachpatte, Boundary value problems for integrodifferential equations with deviating arguments, Chinese J. Math. 13 (1985), 59–66.

S. Schwabik, M. Tvrdý and O. Vejvoda, Differential and Integral Equations: Boundary Value Problems and Adjoints, D. Reidel Publishing Co., 1979.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2019-10-20

How to Cite

1.
MUKHIGULASHVILI, Sulkhan & NOVOTNÁ, Veronika. Some two-point problems for second order integro-differential equations with argument deviations. Topological Methods in Nonlinear Analysis [online]. 20 October 2019, T. 54, nr 2, s. 459–476. [accessed 1.4.2023].
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 54, No 2 (December 2019)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop