Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of solutions for a Kirchhoff type fractional differential equations via minimal principle and Morse theory
  • Home
  • /
  • Existence of solutions for a Kirchhoff type fractional differential equations via minimal principle and Morse theory
  1. Home /
  2. Archives /
  3. Vol 46, No 2 (December 2015) /
  4. Articles

Existence of solutions for a Kirchhoff type fractional differential equations via minimal principle and Morse theory

Authors

  • Nemat Nyamoradi
  • Yong Zhou

DOI:

https://doi.org/10.12775/TMNA.2015.061

Keywords

Fractional differential equations, minimal principle, Morse theory, solutions, Critical point theory

Abstract

In this paper by using the minimal principle and Morse theory, we prove the existence of solutions to the following Kirchhoff type fractional differential equation: \begin{equation*} \begin{cases} M (\int_{\mathbb{R}} (|{}_{- \infty} D_t^\alpha u (t)|^2 + b (t) |u(t)|^2 )\, d t) \cdot ({}_tD_\infty^{\alpha} ({}_{- \infty} D_t^\alpha u (t) ) + b(t) u (t)) = f (t, u (t)), t \in \mathbb{R}, u \in H^\alpha (\mathbb{R}), \end{cases} \end{equation*} where $\alpha \in ({1}/{2},1)$, ${}_tD_\infty^{\alpha}$ and ${}_{- \infty} D_t^\alpha$ are the right and left inverse operators of the corresponding Liouville--Weyl fractional integrals of order $\alpha$ respectively, $H^\alpha$ is the classical fractional Sobolev Space, $u \in \mathbb{R}$, $b \colon \mathbb{R} \to \mathbb{R}$, $\inf\limits_{t \in \mathbb{R}} b (t) \ge 0$, $f \colon \mathbb{R}\times \mathbb{R} \to \mathbb{R}$ Caratheodory function and $M\colon \mathbb{R}^+ \to \mathbb{R}^+$ is a~function that satisfy some suitable conditions.

References

O. Agrawal, J. Tenreiro Machado and J. Sabatier, Fractional Derivatives and their Application: Nonlinear Dynamics, Springer-Verlag, Berlin, 2004.

C. O. Alves, F. S. J. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.

S. Aouaoui, Existence of three solutions for some equation of Kirchhoff type involving variable exponents, Appl. Math. Comput. 218 (2012), 7184-7192.

A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), 305-330.

T. Bartsch and S.J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal. 28 (1997), 419-441.

K. C. Chang, A variant of mountain pass lemma, Sci. Sinica Ser. A 26 (1983), 1241-1255.

M. Gobbino, Quasilinear degenerate parabolic equations of Kirchhoff type, Math. Methods Appl. Sci. 22 (5) (1999), 375-388.

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

F. Jiao and Y. Zhou, Existence results fro fractional boundary value problem via critical point theory, Internat. J. Bifur. Chaos 22 (4) (2012), 1-17.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, (2006).

G. Kirchhoff, Vorlesungen uber Mathematische Physik, Mechanik, Teubner, Leipzig (1883).

J. Q. Liu, The Morse index of a saddle point, Syst. Sci. Math. Sci. 2 (1989), 32-39.

J. Q. Liu and J. Su, Remarks on multiple nontrivial solutions for quasilinear resonant problems, J. Math. Anal. Appl. 258 (2001), 209-222.

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences 74, Springer, Berlin, 1989.

K. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York, 1993.

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

P. Rabinowitz, Minimax Method in Critical Point Theory with Applications to Differential Equations, CBMS Amer. Math. Soc., No 65, 1986.

J. Sabatier, O. Agrawal and J. Tenreiro Machado, Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag, Berlin, 2007.

S. Spagnolo, The Cauchy problem for the Kirchhoff equations, Rend. Sem. Fis. Mat. Milano 62 (1992), 17-51.

C. Torres, Existence of solution for a class of fractional Hamiltonian systems, Electronic J. Differential Equations 259 (2013), 1-12.

G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005.

Z. Zhang and R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems. Math. Method. Appl. Sci. (2013) (Preprint).

Vol 46, No 2 (December 2015)

Downloads

  • PREVIEW
  • FULL TEXT

Published

2015-12-01

How to Cite

1.
NYAMORADI, Nemat & ZHOU, Yong. Existence of solutions for a Kirchhoff type fractional differential equations via minimal principle and Morse theory. Topological Methods in Nonlinear Analysis [online]. 1 December 2015, T. 46, nr 2, s. 617–630. [accessed 1.4.2023]. DOI 10.12775/TMNA.2015.061.
  • PN-ISO 690 (Polish)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 46, No 2 (December 2015)

Section

Articles

Stats

Number of views and downloads: 160
Number of citations: 5

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Karmelitański Instytut Duchowości w Krakowie
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop