Weak solutions of quasilinear elliptic eystems via the cohomological index
Keywords
Quasilinear elliptic system, Leray-Lions conditions, subcritical growth, cohomological index, variational approach, p-Laplacian operatorAbstract
In this paper we study a class of quasilinear elliptic systems of the type $$ \cases -\divg(a_1(x,\nabla u_1,\nabla u_2))=f_1(x,u_1,u_2) & \text{in } \Omega,\\ -\divg(a_2(x,\nabla u_1,\nabla u_2))=f_2(x,u_1,u_2) & \text{in } \Omega,\\ u_1 = u_2 = 0 & \text{on } \partial \Omega, \endcases $$ with $\Omega$ bounded domain in $\R^N$. We assume that $A\colon \Omega \times {\mathbb{R}}^N\times{\mathbb{R}}^N\rightarrow{\mathbb{R}}$, $F\colon \Omega \times {\mathbb{R}} \times {\mathbb{R}} \rightarrow {\mathbb{R}}$ exist such that $a=(a_1,a_2)=\nabla A$ satisfies the so called Leray-Lions conditions and $f_1={\partial F}/{\partial u_1}$, $f_2={\partial F}/{\partial u_2}$ are Carathéodory functions with {\it subcritical growth}. The approach relies on variational methods and, in particular, on a cohomological local splitting which allows one to prove the existence of a nontrivial solution.Downloads
Published
2010-04-23
How to Cite
1.
CANDELA, Anna Maria, DE MEDEIROS, Everaldo Souto, PALMIERI, Giuliana & PERERA, Kanishka. Weak solutions of quasilinear elliptic eystems via the cohomological index. Topological Methods in Nonlinear Analysis [online]. 23 April 2010, T. 36, nr 1, s. 1–18. [accessed 30.3.2023].
Issue
Section
Articles
Stats
Number of views and downloads: 0
Number of citations: 0