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WEAK SOLUTIONS OF QUASILINEAR ELLIPTIC SYSTEMS
VIA THE COHOMOLOGICAL INDEX
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Abstract. In this paper we study a class of quasilinear elliptic systems of

the type

8><
>:

−div(a1(x,∇u1,∇u2)) = f1(x, u1, u2) in Ω,

−div(a2(x,∇u1,∇u2)) = f2(x, u1, u2) in Ω,

u1 = u2 = 0 on ∂Ω,

with Ω bounded domain in RN . We assume that A: Ω × RN × RN → R,

F : Ω× R× R→ R exist such that a = (a1, a2) = ∇A satisfies the so called

Leray–Lions conditions and f1 = ∂F/∂u1, f2 = ∂F/∂u2 are Carathéodory
functions with subcritical growth.

The approach relies on variational methods and, in particular, on a co-

homological local splitting which allows one to prove the existence of a non-
trivial solution.
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1. Introduction

In this paper we investigate the existence of solutions for the quasilinear
elliptic system with homogeneous Dirichlet boundary conditions

(1.1)


−div(a1(x,∇u1,∇u2)) = f1(x, u1, u2) in Ω,

−div(a2(x,∇u1,∇u2)) = f2(x, u1, u2) in Ω,

u1 = u2 = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 2, is a bounded domain with smooth boundary ∂Ω,
a1, a2: Ω × RN × RN → RN and f1, f2: Ω × R × R → R are Carathéodory
functions (i.e. measurable in x ∈ Ω for all ξ = (ξ1, ξ2) ∈ R2N , respectively
u = (u1, u2) ∈ R2, and continuous in ξ, respectively u, for almost all x ∈ Ω).

We assume that a(x, ξ) = (a1(x, ξ), a2(x, ξ)) satisfies the Leray–Lions condi-
tions:

(A1) (growth condition) there exist pj > 1, j = 1, 2, and α1 > 0 such that

|a1(x, ξ)| ≤ α1(|ξ1|p1−1 + |ξ2|p2/p′1 +1), |a2(x, ξ)| ≤ α1(|ξ1|p1/p′2 + |ξ2|p2−1 +1),

for almost all x ∈ Ω and all ξ ∈ R2N , where 1/pj + 1/p′j = 1, j = 1, 2;
(A2) (coercivity condition) there exists α2 > 0 such that

a(x, ξ) · ξ ≥ α2(|ξ1|p1 + |ξ2|p2) for a.a. x ∈ Ω, all ξ ∈ R2N ;

(A3) (monotonicity condition)

[a(x, ξ)− a(x, ξ′)] · (ξ − ξ′) > 0

for almost all x ∈ Ω, all ξ, ξ′ ∈ R2N such that ξ 6= ξ′.

Furthermore, we suppose that there exist two Carathéodory functions A: Ω ×
RN ×RN → R, A = A(x, ξ1, ξ2), and F : Ω×R×R → R, F = F (x, u1, u2), such
that

a1(x, ξ1, ξ2) = ∇ξ1A(x, ξ1, ξ2), a2(x, ξ1, ξ2) = ∇ξ2A(x, ξ1, ξ2),

hence, a(x, ξ) = ∇ξA(x, ξ), and

f1(x, u1, u2) =
∂F

∂u1
(x, u1, u2), f2(x, u1, u2) =

∂F

∂u2
(x, u1, u2).

Thus, note that under suitable assumptions (1.1) is the Euler–Lagrange equation
of the functional Φ: W → R defined as

(1.2) Φ(u1, u2) =
∫

Ω

A(x,∇u1,∇u2) dx−
∫

Ω

F (x, u1, u2) dx,

u = (u1, u2) ∈ W , where W = W 1,p1
0 (Ω) × W 1,p2

0 (Ω) is the product space of
the usual Sobolev spaces. Whence, our problem reduces to the study of critical



Weak Solutions of Quasilinear Elliptic Systems 3

points of Φ in W and, if problem (1.1) admits the trivial solution u1 ≡ u2 ≡ 0,
our aim is proving the existence of at least one nontrivial weak solution.

A model function which satisfies (A1)–(A3) is

(1.3) A(x, ξ) =
1
p1
|ξ1|p1 +

1
p2
|ξ2|p2 , ξ = (ξ1, ξ2) ∈ R2N ,

with pj > 1, j = 1, 2, or more generally,

(1.4) Ã(x, ξ) = M(x)|ξ1|p1 + N(x)|ξ2|p2 , ξ = (ξ1, ξ2) ∈ R2N ,

where M,N : Ω → [d1, d2], 0 < d1 < d2, are measurable functions.
Considering A as in (1.3), problem (1.1) reduces to the corresponding simpler

problem

(1.5)


−∆p1u1 = f1(x, u1, u2) in Ω,

−∆p2u2 = f2(x, u1, u2) in Ω,

u1 = u2 = 0 on ∂Ω.

Quasilinear elliptic operators such as those in problem (1.1), that satisfy the
hypotheses (A1)–(A3), were first studied in [14] and are known in the literature
as Leray–Lions operators. Since then, several existence results for problems
involving such operators have been obtained via monotonicity methods and,
in particular, by using a truncation technique (see [4], [5], [7] and references
therein). More recently, an abstract cohomological local splitting theory has been
developed in [15]–[17] and has been applied in order to obtain some existence
results in the scalar case (see [9]). Here, our aim is to use a similar approach
extending the known results to the quasilinear elliptic system (1.1).

On the other hand, many authors have studied problem (1.5) (see, e.g. [2],
[6], [11], [12], [17], [20]), and have obtained several existence results under hy-
potheses of sublinear, superlinear, and resonant type on the nonlinearity F (for
nonexistence results of nontrivial bounded solution see [20]). In [4], by assuming
a hypothesis of monotonicity on F , a quasilinear elliptic system involving oper-
ators of Leray–Lions type similar to (1.1) was studied. Our results in this paper
are motivated by theirs and use some ideas from [9], [17].

The rest of this paper is organized as follows. In Section 2, we introduce
the complete set of hypotheses on A and F and their partial derivatives, then
we describe the variational setting involving the functional Φ and point out
some of its properties. In Section 3 we give some abstract results involving
a cohomological local splitting. In Section 4 we prove that the functional Φ
satisfies the Palais–Smale condition. Finally, in Section 5 we conclude the paper
with the complete statements of our results and their proofs.
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2. Hypotheses and variational setting

Throughout this paper, we use the following notations:

• meas( · ) is the Lebesgue measure in RN ;
• | · | is the standard norm on any Euclidean space (no ambiguity arises

as the dimension of the vector is clear);
• Lp(Ω) is the space of Lebesgue–measurable functions u: Ω → R with

finite norm |u|p = (
∫
Ω
|u|p dx)1/p if p ∈ [1,∞[;

• L∞(Ω) is the space of Lebesgue–measurable and essentially bounded
functions u: Ω → R with norm |u|∞ = ess supΩ |u|;

• (W 1,p
0 (Ω), ‖ · ‖p) is the classical Sobolev space with ‖u‖p = |∇u|p if

p ≥ 1.

From now on, assume that A and its partial derivatives a1, a2, satisfy the
hypotheses (A1)–(A3). Hence, taking p1, p2 ≥ 1 as in (A1), let us denote (W, ‖·‖)
the product space

W = W 1,p1
0 (Ω)×W 1,p2

0 (Ω), with ‖u‖ = (‖u1‖2p1
+‖u2‖2p2

)1/2, u = (u1, u2) ∈ W.

Since both (W 1,pj

0 (Ω), ‖ · ‖
W

1,pj
0 (Ω)

), j = 1, 2, are reflexive Banach spaces, so is

(W, ‖ · ‖). Moreover, denote with (W ′, ‖ · ‖W ′) its dual space.
According to classical results on this subject, let us introduce the following

further conditions on A:

(A4) there exist 0 < α ≤ β such that

α

(
1
p1
|ξ1|p1 +

1
p2
|ξ2|p2

)
≤ A(x, ξ) ≤ β

(
1
p1
|ξ1|p1 +

1
p2
|ξ2|p2

)
,

for almost all x ∈ Ω, all ξ ∈ R2N ;
(A5) there exist α3, R, µ > 0 such that

α3a(x, ξ) · ξ ≤ µA(x, ξ)− a(x, ξ) · ξ

for almost all x ∈ Ω if |ξ| ≥ R.

Remark 2.1. If conditions (A1), (A4) and (A5) hold, then a constant α4 ≥ 0
exists such that

(2.1) a(x, ξ) · ξ ≤ µA(x, ξ) + α4 for a.a. x ∈ Ω, all ξ ∈ R2N .

Remark 2.2. Let us point out that hypothesis (A5) is a kind of “coercivity
condition” used in [3], [8], [9]. As we see in Section 4, this hypothesis is crucial
to managing Palais–Smale sequences.

Example 2.3. Direct computations allow one to prove that Ã as in (1.4),
hence A in (1.3), satisfies also conditions (A4) and (A5).



Weak Solutions of Quasilinear Elliptic Systems 5

On the other hand, for the function F and its partial derivatives f1, f2, let
us introduce the following conditions:

(F1) f1(x, 0, 0) ≡ 0, f2(x, 0, 0) ≡ 0 in Ω, and, for simplicity, F (x, 0, 0) ≡ 0;
(F2) there exist sj ∈ (1, p∗j ), qj ∈ (1, q∗j ), j = 1, 2, and σ > 0 such that

|f1(x, u1, u2)| ≤ σ(|u1|s1−1 + |u2|q1−1 + 1),

|f2(x, u1, u2)| ≤ σ(|u1|q2−1 + |u2|s2−1 + 1),

for almost all x ∈ Ω and for all (u1, u2) ∈ R2, where we assume

p∗j =

{
Npj/(N − pj) if pj < N ,

any real number strictly greater than 1 if pj ≥ N ,
j = 1, 2,

and q∗1 = 1 + p∗2(p
∗
1 − 1)/p∗1, q∗2 = 1 + p∗1(p

∗
2 − 1)/p∗2;

(F3) there exists θ ≥ µ such that θ > max{p1, p2} and

0 < θF (x, u1, u2) ≤ f1(x, u1, u2)u1 + f2(x, u1, u2)u2,

for almost all x ∈ Ω if |(u1, u2)| ≥ R, where µ and R are as in (A5).

Remark 2.4. Without loss of generality, in (F1) we can assume F (x, 0, 0) ≡
0 almost everywhere in Ω. In fact, if F ( · , 0, 0) ∈ L1(Ω), then we have just to
add a constant to the functional Φ and its differential does not change.

Remark 2.5. By means of the Mean Value Theorem condition (F2) and
direct computations imply that

|F (x, u1, u2)− F (x, 0, 0)| ≤σ(|u1|s1 + |u2|s2 + |u1||u2|q1−1(2.2)

+ |u1|q2−1|u2|+ |u1|+ |u2|)

for almost all x ∈ Ω and for all (u1, u2) ∈ R2.

Remark 2.6. If hypotheses (F1)–(F3) hold, (2.2) and direct computations
imply that there exists C0 ≥ 0 such that

(2.3) f1(x, u1, u2)u1 + f2(x, u1, u2)u2 ≥ θF (x, u1, u2)− C0

for almost all x ∈ Ω, all (u1, u2) ∈ R2.

Remark 2.7. Note that hypothesis (F3) can be weakened if we replace (A2)
with the stronger coerciveness condition aj(x, ξ) ·ξj ≥ α5|ξj |pj , j = 1, 2, for some
α5 > 0.

Lemma 2.8. If F ( · , 0, 0) ≡ 0 and (2.2), (F3) hold, then there exist C ≥ 0
and h ∈ L∞(Ω), h(x) > 0 for almost all x ∈ Ω, such that

(2.4) F (x, u1, u2) ≥ h(x)|(u1, u2)|θ − C for a.a. x ∈ Ω, all (u1, u2) ∈ R2.

Proof. Taking (u1, u2) ∈ R2, two cases may occur: either |(u1, u2)| ≥ R or
|(u1, u2)| < R.
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If |(u1, u2)| ≥ R, denote

(ũ1, ũ2) = R
(u1, u2)
|(u1, u2)|

and t =
(
|(u1, u2)|

R

)θ

.

In general, taking t ≥ 1 condition (F3) implies

d

dt
(F (x, t1/θũ1, t

1/θũ2)) =
1
θt

f1(x, t1/θũ1, t
1/θũ2)t1/θũ1

+
1
θt

f2(x, t1/θũ1, t
1/θũ2) t1/θũ2 ≥

1
t
F (x, t1/θũ1, t

1/θũ2).

Since t ≥ 1, by integrating we get F (x, u1, u2) ≥ tF (x, ũ1, ũ2) which implies
F (x, u1, u2) ≥ h(x)|(u1, u2)|θ, with h(x) = R−θ min{F (x, u1, u2) > 0 : |(u1, u2)|
= R} for almost all x ∈ Ω, where h ∈ L∞(Ω) follows from (2.2).

On the other hand, from (2.2) and assuming

C = 2
∣∣∣∣ sup
|(u1,u2)|≤R

F (x, u1, u2)
∣∣∣∣
∞

,

direct computations imply

F (x, u1, u2) ≥ h(x)|(u1, u2)|θ − C for a.a. x ∈ Ω if |(u1, u2)| < R.

Hence, the proof is complete. �

Remark 2.9. If conditions (F1)–(F3) hold, from (2.2) and (2.4) it follows

min{s1, s2} ≥ θ > max{p1, p2}.

As (A4) implies a(x, 0, 0) ≡ 0, then from (F1) it follows that problem (1.1)
always admits the trivial solution u1 ≡ u2 ≡ 0. Thus, in order to obtain a non-
trivial weak solution, we impose an additional condition on F involving a suitable
“eigenvalue problem” (for a similar condition, see [6, pp. 312]).

More precisely, let G: R2 → [0,∞) be a given even C1-function such that

(2.5) G(t1/p1u1, t
1/p2u2) = tG(u1, u2) for all t ≥ 0, (u1, u2) ∈ R2,

(2.6) G(u1, u2) ≤ α6(|u1|p1 + |u2|p2) for all (u1, u2) ∈ R2, for some α6 > 0,

and consider the related nonlinear “eigenvalue problem”

(2.7)


−∆p1u1 = λ

∂G
∂u1

(u1, u2) in Ω,

−∆p2u2 = λ
∂G
∂u2

(u1, u2) in Ω,

u1 = u2 = 0 on ∂Ω.

Remark 2.10. Examples of functions which satisfy conditions (2.5)–(2.6)
are:

(a) G(u1, u2) = (c1/p1)|u1|p1 + (c2/p2)|u2|p2 for some c1, c2 > 0;
(b) G(u1, u2) = c3|u1|r1 |u2|r2 for some c3 > 0, where r1/p1 + r2/p2 = 1,
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and the related eigenvalue problems are
−∆p1u1 = λc1|u1|p1−2u1 in Ω,

−∆p2u2 = λc2|u2|p2−2u2 in Ω,

u1 = u2 = 0 on ∂Ω,

in case (a),


−∆p1u1 = λc3r1|u1|r1−2u1|u2|r2 in Ω,

−∆p2u2 = λc3r2|u1|r1 |u2|r2−2u2 in Ω,

u1 = u2 = 0 on ∂Ω,

in case (b).

Via the cohomological index Perera et al. [17, Theorem 4.6] prove that (2.7)
admits a sequence of eigenvalues λk ↗ ∞ with some “good” properties (see
Proposition 3.3).

Thus, we can consider the following assumption:

(F4) there exist % > 0, k ≥ 1, and λ, λ ∈ R with λk < λ ≤ λ < λk+1 such
that

βλG(u1, u2) ≤ F (x, u1, u2) ≤ αλG(u1, u2),

for almost all x ∈ Ω if |(u1, u2)| ≤ %.

Lemma 2.11. Assume that (F1), (F4) and (2.2) hold. Then, there exists
C1 > 0 such that

(2.8) − C1(|u1|p
∗
1 + |u2|p

∗
2 ) + λβG(u1, u2) ≤F (x, u1, u2)

≤λαG(u1, u2) + C1(|u1|p
∗
1 + |u2|p

∗
2 )

for almost all x ∈ Ω, all (u1, u2) ∈ R2.

Proof. For almost all x ∈ Ω, two cases may occur: either |(u1, u2)| > % or
|(u1, u2)| ≤ %.

If |(u1, u2)| > %, it is |u1| > %/2 or |u2| > %/2. Then, (2.2) and direct
computations imply that

|F (x, u1, u2)| ≤ σ̃(|u1|p
∗
1 + |u2|p

∗
2 )

for some σ̃ > 0. Hence, this last estimate and (2.6) imply (2.8) is satisfied for
a suitable C1 > 0.

On the contrary, if |(u1, u2)| ≤ %, (2.8) is a direct consequence of (F4). �

Now, let us consider the functional Φ:W → R defined as in (1.2). Classical
arguments allow one to prove the following regularity result.

Lemma 2.12. The conditions (A1), (A4) and (F2) imply Φ ∈ C1(W, R) with
differential operator

dΦ(u1, u2)[(ϕ1, ϕ2)] =
2∑

j=1

∫
Ω

(aj(x,∇u1,∇u2) · ∇ϕj − fj(x, u1, u2)ϕj)dx,
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for all (u1, u2), (ϕ1, ϕ2) ∈ W . Hence, the critical points of Φ in W are the weak
solutions of (1.1).

Finally, we conclude this section establishing some geometric properties of Φ
that we use later. To this aim, denoting

Φa = {(u1, u2) ∈ W : Φ(u1, u2) ≤ a} for any a ∈ R,

and reasoning as in [17, Lemma 10.20], the following lemma can be proved.

Lemma 2.13. Under the hypotheses (A1), (A4), (A5) and (F1)–(F3), there
is an a0 ≤ 0 such that for all a < a0, Φa is homotopic to the unit sphere

S1 = {u = (u1, u2) ∈ W : ‖(u1, u2)‖ = 1}.

Proof. Fix (u1, u2) ∈ S1. Taking t > 0, from (A4) and Lemma 2.8 it follows
that

Φ(tu1, tu2) ≤ β
2∑

j=1

tpj

pj

∫
Ω

|∇uj |pj dx− tθ
∫

Ω

h(x)|(u1, u2)|θ dx + Cmeas(Ω).

Since θ > max{p1, p2} and
∫
Ω

h(x)|(u1, u2)|θ dx > 0, we have

(2.9) Φ(tu1, tu2) → −∞ as t →∞.

On the other hand, using (2.1) and (2.3), with θ ≥ µ, if t > 0 we obtain

d

dt
(Φ(tu1, tu2)) =

∫
Ω

(
a1(x, t∇u1, t∇u2) · ∇u1 + a2(x, t∇u1, t∇u2) · ∇u2

)
dx

−
∫

Ω

(f1(x, tu1, tu2)u1 + f2(x, tu1, tu2)u2) dx

≤ µ

t

∫
Ω

(
A(x, tu1, tu2)− F (x, tu1, tu2)

)
dx +

α4 + C0

t
meas(Ω)

=
µ

t

(
Φ(tu1, tu2)− a0

)
,

where a0 = −(α4 + C0)meas(Ω)/µ ≤ 0. Hence, if Φ(tu1, tu2) ≤ a for some
a < a0, then

d

dt
(Φ(tu1, tu2)) < 0.

Thus, since (A4) and (F1) imply Φ(0, 0) = 0, taking any a < a0 from (2.9) it
follows that there exists a unique ta = ta(u1, u2) > 0 such that Φ(tau1, tau2) = a

and

Φ(tu1, tu2) > a for all 0 ≤ t < ta, Φ(tu1, tu2) < a for all t > ta.

Consequently, Φa = {(tu1, tu2) : (u1, u2) ∈ S1, t ≥ ta(u1, u2)}, where, by the
Implicit Function Theorem, ta: (u1, u2) ∈ S1 7→ ta(u1, u2) ∈ (0,+∞) is a C1

map. �
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Corollary 2.14. Assume that the hypotheses of Lemma 2.13 hold and take
any a < a0. Then, using the same notations as in the proof of Lemma 2.13, we
have that Φa is a deformation retract of W \{0} via H: [0, 1]×(W \{0}) → W \{0}
defined by

H(t, (u1, u2))

=

{
(1− t)(u1, u2) + t ta(u1, u2)(u1, u2) if (u1, u2) ∈ (W \ {0}) \ Φa,

(u1, u2) if (u1, u2) ∈ Φa.

3. Cohomological local splitting

Let us first recall the notion of cohomological local splitting introduced in [17,
Definition 3.33] (see also [15]). In what follows i denotes the Fadell–Rabinowitz
cohomological index (see [13]) and for a subset C of a Banach space W we write

IC = {tu : u ∈ C, t ∈ [0, 1]}.

Definition 3.1. We say that a C1-functional Φ: W → R, defined on a Ba-
nach space W , has a cohomological local splitting near zero in dimension q,
1 ≤ q < +∞, if there are

(a) a bounded symmetric subset M of W \ {0} that is radially homeomor-
phic to the unit sphere in W , and disjoint symmetric subsets A0 6= ∅
and B0 of M such that

i(A0) = i(M\B0) = q;

(b) a homeomorphism h from IM onto a neighborhood U of zero containing
no other critical points, such that h(0) = 0 and

Φ|A ≤ 0 < Φ|B\{0}

where A = h(IA0) and B = h(IB0) ∪ {0}.

On the other hand, denoting by H∗( · , · ) the Alexander–Spanier cohomol-
ogy with Z2-coefficients (see [19]), the cohomological critical groups of Φ at an
isolated critical point u0 are defined by

(3.1) Cq(Φ, u0) = Hq(Φc ∩ U,Φc ∩ U \ {u0}), if q ≥ 0,

where c = Φ(u0) is the corresponding critical value and U is a neighborhood of
u0 containing no other critical point of Φ (see e.g. [10]).

The following result can be stated.
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Proposition 3.2 [17, Proposition 3.34]). If Φ has a cohomological local
splitting near zero in dimension k, then Ck(Φ, 0) 6= 0.

Here, we want to apply the previous theory to our setting.
First of all, let us recall some results concerning the nonlinear eigenvalue

problem (2.7) proved in [17]. To this aim, define

I(u1, u2) =
1
p1

∫
Ω

|∇u1|p1 dx +
1
p2

∫
Ω

|∇u2|p2 dx, (u1, u2) ∈ W.

Clearly, I ∈ C1(W, R) is such that

(3.2) I(t1/p1u1, t
1/p2u2) = tI(u1, u2) for all t ≥ 0, (u1, u2) ∈ W .

Furthermore, by [17, Lemma 10.6], the set

M := {u = (u1, u2) ∈ W : I(u1, u2) = 1}

is radially homeomorphic to the unit sphere S1 in W .
Now, taking the function G as in the hypothesis (F4), define

J(u1, u2) =
∫

Ω

G(u1, u2) dx and Ψ(u1, u2) =
I(u1, u2)
J(u1, u2)

if J(u1, u2) 6= 0.

Conditions (2.5)–(2.6) imply that J ∈ C1(W, R) and

(3.3) J(t1/p1u1, t
1/p2u2) = tJ(u1, u2) for all t ≥ 0, (u1, u2) ∈ W .

Moreover, the set M+ := {u = (u1, u2) ∈ M : J(u1, u2) > 0} is a symmetric
open submanifold of M and Ψ̃ = Ψ|M+ is a C1 function on M+.

For simplicity, for each λ ∈ R denote

Ψ̃λ = {u = (u1, u2) ∈M+ : Ψ̃(u1, u2) ≤ λ},
Ψ̃λ = {u = (u1, u2) ∈M+ : Ψ̃(u1, u2) ≥ λ},

and, if F is the class of symmetric subsets of M+, let Fk = {M ∈ F : i(M) ≥ k}
for each k ∈ N and

(3.4) λk = inf
M∈Fk

sup
u∈M

Ψ̃(u1, u2).

Proposition 3.3 ([17, Theorem 10.10]). Each λk in (3.4) is an eigenvalue
of (2.7). Furthermore, λk ↗ +∞ and, if λk < λ < λk+1, then

i(Ψ̃λ) = k = i(M+ \ Ψ̃λk+1).

Considering λ, λ as in (F4) and fixing λ ≤ λ ≤ λ, let

A0 = Ψ̃λ and B0 = Ψ̃λk+1 ∪ (M\M+).
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Obviously, by the previous definitions we have

A0 =
{

u = (u1, u2) ∈M+ : I(u1, u2) ≤ λ

∫
Ω

G(u1, u2) dx

}
,

B0 =
{

u = (u1, u2) ∈M+ : I(u1, u2) ≥ λk+1

∫
Ω

G(u1, u2) dx

}
∪ {(u1, u2) ∈M : J(u1, u2) = 0}.

Moreover, for each ρ > 0 define the map

hρ(tu1, tu2) = ((tρ)1/p1u1, (tρ)1/p2u2), t ∈ [0, 1], (u1, u2) ∈M,

which is a homeomorphism between IM and the neighbourhood of zero

Uρ = {(t1/p1u1, t
1/p2u2) : (u1, u2) ∈M, 0 ≤ t ≤ ρ}.

For simplicity, we denote Bρ = hρ(IB0) ∪ {0} and Aρ = hρ(IA0) for any ρ > 0.
In order to show that Φ has a cohomological local splitting near zero, it

suffices to prove that the following statement holds.

Lemma 3.4 (Splitting geometry). If (A4), (F1), (F2) and (F4) hold, there
exists ρ∗ > 0 such that

(a) Φ(u1, u2) > 0 if (u1, u2) ∈ Bρ∗ \ {0},
(b) Φ(u1, u2) ≤ 0 if (u1, u2) ∈ Aρ∗ .

Proof. Taking any ρ > 0, note that Bρ = {(t1/p1u1, t
1/p2u2) : (u1, u2) ∈

B0, 0 ≤ t ≤ ρ} ∪ {0}. Then, taking (u1, u2) ∈ Bρ, we have (u1, u2) =
(t1/p1u1, t

1/p2u2) for some (u1, u2) ∈ B0 and 0 ≤ t ≤ ρ. Clearly, by definition we
have I(u1, u2) ≤ ρ.

Moreover, the Sobolev Imbedding Theorem and direct computations imply

|u1|
p∗1
p∗1
≤ C2‖u1‖

p∗1
p1 ≤ C3(I(u1, u2))p∗1/p1 ,

|u2|
p∗2
p∗2
≤ C2‖u1‖

p∗2
p2 ≤ C3(I(u1, u2))p∗2/p2 ,

for some C2, C3 > 0. Together with the second inequality in (2.8), these estimates
imply that ∫

Ω

F (x, u1, u2) dx ≤ λα

∫
Ω

G(u1, u2) dx + ε(ρ)I(u1, u2)(3.5)

= λαJ(u1, u2) + ε(ρ)I(u1, u2),

where ε(ρ) = C1C3(ρp∗1/p1−1 + ρp∗2/p2−1) → 0 as ρ → 0. Hence, (3.5) and (A4)
imply that

(3.6) Φ(u1, u2) ≥ (α− ε(ρ))I(u1, u2)− λαJ(u1, u2).

Now, two cases may occur: either (u1, u2) ∈ Ψ̃λk+1 or (u1, u2) ∈M \M+.
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If (u1, u2) ∈ Ψ̃λk+1 , (3.2) and (3.3) imply

I(u1, u2) ≥ λk+1J(u1, u2),

thus, if ρ > 0 is small enough, from (3.6) it follows

Φ(u1, u2) ≥
(

α

(
1− λ

λk+1

)
− ε(ρ)

)
I(u1, u2) > 0.

On the other hand, if (u1, u2) ∈ M \M+, we have J(u1, u2) ≤ 0 so, if ρ > 0 is
small enough, (3.6) implies

Φ(u1, u2) ≥ (α− ε(ρ))I(u1, u2) > 0.

Whence, (a) holds.
In order to prove (b), note that the first inequality in (2.8) gives

−
∫

Ω

F (x, u1, u2) dx ≤ ε(ρ)I(u1, u2)− βλ

∫
Ω

G(u1, u2) dx,

which, together with (A4), implies

Φ(u1, u2) ≤ βI(u1, u2)− βλ

∫
Ω

G(u1, u2)dx + ε(ρ)I(u1, u2)

≤
(

β

(
1− λ

λ

)
+ ε(ρ)

)
I(u1, u2) ≤ 0

if (u1, u2) ∈ Aρ, for ρ sufficiently small. This completes the proof. �

Proposition 3.5. If the hypotheses (A1), (A4), (F1), (F2) and (F4) hold,
then Φ has a cohomological local splitting near zero in dimension k, where k is
as in (F4). Hence, Ck(Φ, 0) 6= 0.

Proof. By Lemma 2.12 the functional Φ is C1 in W . Furthermore, con-
sidering k as in (F4) and M, A0, B0 as in the first part of this section with
λk < λ ≤ λ ≤ λ < λk+1, from M \ B0 = M+ \ Ψ̃λk+1 and Proposition 3.3 it
follows

i(A0) = k = i(M\B0).

Then Lemma 3.4 and Proposition 3.2 complete the proof. �

4. A compactness condition

From now on, assume that (A1), (A4) and (F2) hold. Thus, Φ is a C1

functional on W (see Lemma 2.12).
Briefly, we say that (un)n ⊂ W , un = (u1,n, u2,n), is a Palais–Smale sequence

at level c, c ∈ R, if

(4.1) Φ(u1,n, u2,n) n−→ c, ‖dΦ(u1,n, u2,n)‖W ′
n−→ 0.
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Recall that the functional Φ satisfies the Palais–Smale condition at level c in
W ((PS)c for short) if every Palais–Smale sequence at level c has a subsequence
that converges in the norm of W .

In order to show that Φ satisfies (PS)c for each c ∈ R, some lemmas are
needed.

Lemma 4.1. Assume that also the hypotheses (A2), (A5), (F1) and (F3)
hold. Then, taking any c ∈ R, each (PS)c sequence is bounded.

Proof. Let (un)n ⊂ W , un = (u1,n, u2,n), be such that (4.1) holds. Whence,
we have

Φ(u1,n, u2,n) = c + o(1),

dΦ(u1,n, u2,n)[(u1,n, 0)] = o(1)‖u1,n‖p1 ,

dΦ(u1,n, u2,n)[(0, u2,n)] = o(1)‖u2,n‖p2 ,

with o(1) any infinitesimal sequence of real numbers.

Since µ ≤ θ, by using (A2) and (A5) we get

θA(x, ξ)− a(x, ξ) · ξ ≥ α2α3(|ξ1|p1 + |ξ2|p2) for a.a. x ∈ Ω if |ξ| ≥ R.

Thus, from (F3) it follows

θc + o(1) + o(1)‖un‖
= θΦ(u1,n, u2,n)− dΦ(u1,n, u2,n)[(u1,n, 0)]− dΦ(u1,n, u2,n)[(0, u2,n)]

=
∫

Ω

(θA(x,∇u1,n,∇u2,n)− a(x,∇u1,n,∇u2,n) · ∇un) dx

−
∫

Ω

(θF (x, u1,n, u2,n)− f1(x, u1,n, u2,n)u1,n − f2(x, u1,n, u2,n)u2,n) dx

≥α2α3(‖u1,n‖p1
p1

+ ‖u2,n‖p2
p2

)− α2α3

∫
ΩR(∇un)

(|∇u1,n|p1 + |∇u2,n|p2) dx

+
∫

ΩR(∇un)

(θA(x,∇u1,n,∇u2,n)− a(x,∇u1,n,∇u2,n) · ∇un) dx

−
∫

ΩR(un)

(θF (x, u1,n, u2,n)− f1(x, u1,n, u2,n)u1,n − f2(x, u1,n, u2,n)u2,n) dx,

with

(4.2) ΩR(∇un) = {x ∈ Ω : |∇un(x)| ≤ R}, ΩR(un) = {x ∈ Ω : |un(x)| ≤ R}.
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But direct computations and definitions (4.2) imply that they are bounded not
only ( ∫

ΩR(∇un)

(|∇u1,n|p1 + |∇u2,n|p2) dx

)
n

,( ∫
ΩR(∇un)

A(x,∇u1,n,∇u2,n) dx

)
n

,( ∫
ΩR(∇un)

a(x,∇u1,n,∇u2,n) · ∇un) dx

)
n

,

(by using conditions (A1), (A4)) but also( ∫
ΩR(un)

F (x, u1,n, u2,n) dx

)
n

,( ∫
ΩR(un)

(f1(x, u1,n, u2,n)u1,n + f2(x, u1,n, u2,n)u2,n) dx

)
n

,

(by using conditions (F2) and (2.2)). Thus, (un)n has to be bounded in W ,
too. �

Now, we prove the following compactness result by using an argument similar
to that in [1, Lemma 3.2] (see also [4]). But first, as useful in the following, let us
recall a suitable version of the Young’s Inequality: fixing any ε > 0 there exists
γε,pj

> 0, i.e. a constant γε,pj
depending only on ε and pj , such that

(4.3) η1η2 ≤ εη
pj

1 + γε,pj
η

p′j
2 for all η1, η2 ≥ 0.

Lemma 4.2. Assume that (A2), (A3) also hold. If (un)n ⊂ W , un =
(u1,n, u2,n), and u = (u1, u2) ∈ W are such that

uj,n ⇀ uj weakly in W
1,pj

0 (Ω), j = 1, 2,(4.4) ∫
Ω

(a(x,∇u1,n,∇u2,n)− a(x,∇u1,∇u2)) · (∇un −∇u) dx → 0,(4.5)

then uj,n → uj strongly in W
1,pj

0 (Ω), j = 1, 2.

Proof. For simplicity, assume

Dn(x) = (a(x,∇u1,n(x),∇u2,n(x))− a(x,∇u1(x),∇u2(x))) · (∇un(x)−∇u(x)),

for x ∈ Ω. Since the imbedding W
1,pj

0 (Ω) ↪→ L1(Ω) is compact and Dn → 0 in
L1(Ω), up to a subsequence we may assume that

uj,n(x) → uj(x) a.e. in Ω, j = 1, 2, and Dn(x) → 0 a.e. in Ω.

Hence, there exists a set N ⊂ Ω, meas(N) = 0, such that for all j = 1, 2 it is

(4.6)
|uj(x)|, |∇uj(x)| < ∞, uj,n(x) → uj(x)

and Dn(x) → 0 for all x ∈ Ω \N .
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Now, fixing x ∈ Ω \N , let ξn = (ξ1,n, ξ2,n), with ξj,n = ∇uj,n(x) (j = 1, 2), and
ξ = (ξ1, ξ2), with ξj = ∇uj(x) (j = 1, 2).

From one hand, using (A2) we have

(4.7) a(x, ξn) · ξn ≥ α2(|ξ1,n|p1 + |ξ2,n|p2).

On the other hand, fixing any ε > 0, from (A1), the Young’s Inequality (4.3)
and direct computations it follows

a(x, ξn) · ξ = a1(x, ξn) · ξ1 + a2(x, ξn) · ξ2

≤α1(|ξ1,n|p1−1 + |ξ2,n|p2/p′1 + 1)|ξ1|
+ α1(|ξ1,n|p1/p′2 + |ξ2,n|p2−1 + 1)|ξ2|

≤ 2α1ε(|ξ1,n|p1 + |ξ2,n|p2) + h∗(ε, ξ),

a(x, ξ) · ξn = a1(x, ξ) · ξ1,n + a2(x, ξ) · ξ2,n

≤α1(|ξ1|p1−1 + |ξ2|p2/p′1 + 1)|ξ1,n|+ α1(|ξ1|p1/p′2 + |ξ2|p2−1 + 1)|ξ2,n|
≤ 3α1ε(|ξ1,n|p1 + |ξ2,n|p2) + h∗∗(ε, ξ),

where both h∗(ε, ξ) and h∗∗(ε, ξ) are suitable positive expressions depending only
on ε and ξ.

Thus, these last estimates and (4.7) imply

Dn(x) ≥ (α2 − 5α1ε)(|ξ1,n|p1 + |ξ2,n|p2) + a(x, ξ) · ξ − h∗(ε, ξ)− h∗∗(ε, ξ);

hence, choosing ε small enough, from (4.6) we have that (ξ1,n)n, (ξ2,n)n are
bounded sequences in RN and so is (ξn)n in R2N .

Thus, we can consider ξ∗ as a cluster point of (ξn)n. Obviously, we have
|ξ∗| < ∞ and, by the continuity of a(x, · ), (4.6) implies

(a(x, ξ∗)− a(x, ξ)) · (ξ∗ − ξ) = 0.

Whence, from (A3) we have ξ∗ = ξ. So, for the uniqueness of the cluster point, we
have ξn → ξ. Hence, ∇un(x) → ∇u(x) for all x ∈ Ω \N , i.e. almost everywhere
in Ω.

Now, in order to complete the proof, it is enough following the same argu-
ments developed in the the last part of the proof of [7, Lemma 5]. �

Proposition 4.3. Assume that (A1)–(A5) and (F1)–(F3) hold. Then Φ sa-
tisfies the (PS)c condition for all c ∈ R.

Proof. Fixing c ∈ R, let (un)n ⊂ W , un = (u1,n, u2,n), be a (PS)c sequence,
so (4.1) holds. Then, from Lemma 4.1 it follows that it is bounded and u ∈ W ,
u = (u1, u2), exists such that, passing to a subsequence if necessary, (4.2) holds.
Whence,

(4.8) uj,n → uj in Lr(Ω) for all 1 ≤ r < p∗j , j = 1, 2.
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Now, in order to complete the proof by applying Lemma 4.2, we need (4.5). So,
firstly let us remark that (4.4) implies

(4.9)
∫

Ω

a(x,∇u1,∇u2) · ∇(un − u) dx → 0.

Furthermore, from (4.1) it follows

(4.10)
∫

Ω

a(x,∇u1,n,∇u2,n) · ∇(un − u) dx = o(1)

+
∫

Ω

f1(x, u1,n, u2,n)(u1,n − u1) dx +
∫

Ω

f2(x, u1,n, u2,n)(u2,n − u2) dx.

We claim that

(4.11)
∫

Ω

fj(x, u1,n, u2,n)(uj,n − uj) dx → 0 for both j = 1 and j = 2.

In fact, from (F2) it follows∣∣∣∣ ∫
Ω

f1(x, u1,n, u2,n)(u1,n − u1) dx

∣∣∣∣
≤ σ

∫
Ω

(|u1,n|s1−1|u1,n − u1|+ |u2,n|q1−1|u1,n − u1|+ |u1,n − u1|) dx,

where the Cauchy–Schwarz inequality implies∫
Ω

|u1,n|s1−1|u1,n − u1| dx ≤
( ∫

Ω

|u1,n|s1 dx

)(s1−1)/s1

|u1,n − u1|s1 ,∫
Ω

|u2,n|q1−1|u1,n − u1| dx ≤
( ∫

Ω

|u1,n|(q1−1)p1/(p1−1) dx

)(p1−1)/p1

|u1,n − u1|p1 .

Thus, (4.8) implies (4.11) if j = 1. Similar arguments allow one to obtain
(4.11) also if j = 2. So, (4.9)–(4.11) imply (4.5), so the conclusion follows from
Lemma 4.2. �

5. Main results

The main result of this paper can be stated as follows.

Theorem 5.1. If (A1)–(A5) and (F1)–(F4) hold, then problem (1.1) has
a nontrivial weak solution in W .

Proof. Arguing by contradiction, suppose that the origin is the unique
critical point of Φ in W . As in this case (3.1) becomes

Cq(Φ, 0) = Hq(Φ0 ∩ U,Φ0 ∩ U \ {0}), q ≥ 0,

where U is a neighborhood of (0, 0) containing no other critical points of Φ, we
can take U = W and obtain

Cq(Φ, 0) = Hq(Φ0,Φ0 \ {0}), q ≥ 0.
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Since Φ satisfies the (PS)c condition at each level c ∈ R, by the Deformation
Lemma (see [18]) Φa is a deformation retract of Φ0 \ {0} for any a < Φ(0, 0) = 0
and Φ0 is a deformation retract of W . Thus, we conclude that

Cq(Φ, 0) = Hq(W,Φa) for any a < 0.

On the other hand, Lemma 2.13 implies that Φa is contractible for all a < a0.
Therefore,

Cq(Φ, 0) = 0 for all q ≥ 0.

This contradicts Proposition 3.5 and proves the theorem. �

Corollary 5.2. If (F1)–(F4) hold, then system (1.5) has a nontrivial weak
solution.
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58051-900, João Pessoa – PB, BRAZIL

E-mail address: everaldo@mat.ufpb.br

Kaniskha Perera
Department of Mathematical Sciences

Florida Institute of Technology

Melbourne, FL 32901, USA

E-mail address: kperera@fit.edu

TMNA : Volume 36 – 2010 – No 1


