Przejdź do sekcji głównej Przejdź do głównego menu Przejdź do stopki
  • Zaloguj
  • Język
    • English
    • Język Polski
  • Menu
  • Strona domowa
  • Aktualny numer
  • Online First
  • Archiwum
  • O czasopiśmie
    • O czasopiśmie
    • Przesyłanie tekstów
    • Zespół redakcyjny
    • Polityka prywatności
    • Kontakt
  • Zaloguj
  • Język:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Index at infinity and bifurcations of twice degenerate vector fields
  • Strona domowa
  • /
  • Index at infinity and bifurcations of twice degenerate vector fields
  1. Strona domowa /
  2. Archiwum /
  3. Vol 35, No 1 (March 2010) /
  4. Articles

Index at infinity and bifurcations of twice degenerate vector fields

Autor

  • Alexander Krasnosel'skiĭ

Słowa kluczowe

Operator equations, index at infinity, bifurcations at infinity, degenerate vector fields, degree theory, asymptotic expansions, Dirichlet problem

Abstrakt

We present a method to study twice degenerate at infinity asymptotically linear vector fields, i.e the fields with degenerate principal linear parts and next order bounded terms. The main features of the method are sharp asymptotic expansions for projections of nonlinearities onto the kernel of the linear part. The method includes theorems in abstract Banach spaces, the expansions which are the main assumptions of these abstract theorems, and lemmas on the exact form of the expansions for generic functional nonlinearities with saturation. The method leads to several new results on solvability and bifurcations for various classic BVPs. If the leading terms in the expansions are of order $0$, then solvability conditions (and conditions for the index at infinity to be non-zero) coincide with Landesman-Lazer conditions, traditional for the BVP theory. If the terms of order $0$ vanish (the Landesman-Lazer conditions fail), then it is necessary to determine and to take into account nonlinearities that are smaller at infinity. The presented method uses such nonlinearities and makes it possible to obtain the expansions with the leading terms of arbitrary possible orders. The method is applicable if the linear part has simple degeneration, if the corresponding eigenfunction vanishes, and if the small nonlinearities decrease at infinity sufficiently fast. The Dirichlet BVP for a second order ODE is the main model example, scalar and vector cases being considered separately. Other applications (the Dirichlet problem for the Laplace PDE and the Neumann problem for the second order ODE) are given rather schematically.

Pobrania

  • FULL TEXT (English)

Opublikowane

2010-04-23

Jak cytować

1.
KRASNOSEL’SKIĬ, Alexander. Index at infinity and bifurcations of twice degenerate vector fields. Topological Methods in Nonlinear Analysis [online]. 23 kwiecień 2010, T. 35, nr 1, s. 99–126. [udostępniono 5.7.2025].
  • PN-ISO 690 (Polski)
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Pobierz cytowania
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Numer

Vol 35, No 1 (March 2010)

Dział

Articles

Statystyki

Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0

Wyszukiwanie

Wyszukiwanie

Przeglądaj

  • Indeks autorów
  • Lista archiwalnych numerów

Użytkownik

Użytkownik

Aktualny numer

  • Logo Atom
  • Logo RSS2
  • Logo RSS1

Newsletter

Zapisz się Wypisz się
W górę

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partnerzy platformy czasopism

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Uniwersytet Mikołaja Kopernika w Toruniu Deklaracja dostępności Sklep wydawnictwa