Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the suspension isomorphism for index braids in a singular perturbation problem
  • Home
  • /
  • On the suspension isomorphism for index braids in a singular perturbation problem
  1. Home /
  2. Archives /
  3. Vol 32, No 2 (December 2008) /
  4. Articles

On the suspension isomorphism for index braids in a singular perturbation problem

Authors

  • Maria C. Carbinatto
  • Krzysztof P. Rybakowski

Keywords

Singular perturbations, differential equations on manifolds, Conley index, (co)homology index braid, continuation properties

Abstract

We consider the singularly perturbed system of ordinary differential equations $$ \aligned \varepsilon\dot y&=f(y,x,\varepsilon), \\ \dot x&=h(y,x,\varepsilon) \endaligned \leqno(E_\varepsilon) $$ on $Y\times \Cal{M}$, where $Y$ is a finite dimensional normed space and $\Cal{M}$ is a smooth manifold. We assume that there is a reduced manifold of $(E_\varepsilon)$ given by the graph of a function $\phi\co \Cal{M}\to Y$ and satisfying an appropriate hyperbolicity assumption with unstable dimension $k\in{\mathbb N}_0$. We prove that every Morse decomposition $(M_p)_{p\in P}$ of a compact isolated invariant set $S_0$ of the reduced equation $$ \dot x=h(\phi(x),x,0) $$ gives rises, for $\varepsilon> 0$ small, to a Morse decomposition $(M_{p,\varepsilon})_{p\in P}$ of an isolated invariant set $S_\varepsilon$ of $(E_\varepsilon)$ such that $(S_\varepsilon,(M_{p,\varepsilon})_{p\in P})$ is close to $(\{0\}\times S_0,(\{0\}\times M_p)_{p\in P})$ and the (co)homology index braid of $(S_\varepsilon,(M_{p,\varepsilon})_{p\in P})$ is isomorphic to the (co)homology index braid of $(S_0,(M_{p})_{p\in P})$ shifted by $k$ to the left.

Downloads

  • FULL TEXT

Published

2008-12-01

How to Cite

1.
CARBINATTO, Maria C. and RYBAKOWSKI, Krzysztof P. On the suspension isomorphism for index braids in a singular perturbation problem. Topological Methods in Nonlinear Analysis. Online. 1 December 2008. Vol. 32, no. 2, pp. 199 - 225. [Accessed 5 July 2025].
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 32, No 2 (December 2008)

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop