The existence of minimizers of the action functional without convexity assumption
Keywords
Dirichlet problem, duality, variational principle, Euler-Lagrange equationAbstract
We shall prove the existence of minimizers of the following functional $ f(u)=\int_{0}^{T}L(x,u(x),u'(x))dx$ without convexity assumption. As a consequence of this result and the duality described in [A. Nowakowski, < i> Metody wariacyjne dla nieliniowych problemów Dirichleta< /i> (Chapter 6), Wydawnictwo Naukowo Techniczne, Warszawa, 1994] we derive the existence of solutions for the Dirichlet problem for a certain differential inclusion being a generalization of the Euler-Lagrange equation of the functional $f$.Downloads
Published
2002-09-01
How to Cite
1.
ORPEL, Aleksandra. The existence of minimizers of the action functional without convexity assumption. Topological Methods in Nonlinear Analysis [online]. 1 September 2002, T. 20, nr 1, s. 179–193. [accessed 27.3.2023].
Issue
Section
Articles
Stats
Number of views and downloads: 0
Number of citations: 0