Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

An estimation of the Banach-Mazur distance between the space of convergent sequences and a concrete model of a space of affine continuous functions
  • Home
  • /
  • An estimation of the Banach-Mazur distance between the space of convergent sequences and a concrete model of a space of affine continuous functions
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

An estimation of the Banach-Mazur distance between the space of convergent sequences and a concrete model of a space of affine continuous functions

Authors

  • Jeimer Villada Bedoya https://orcid.org/0000-0003-0285-7035

DOI:

https://doi.org/10.12775/TMNA.2025.033

Keywords

Banach-Mazur distance, space of convergent sequences, hyperplane, space of affine continuous functions

Abstract

In this paper $c$ denotes the space of convergent sequences endowed with the supremum norm and $\mathcal{W}$ is the hyperplane of $c$ defined by $\mathcal{W}=\Big\{ (x(i))\in c: \lim\limits_{i\to\infty}({x(1)+x(2)})/{2}\Big\}$. We pose the problem of determining the Banach-Mazur distance $d(c,\mathcal{W})$ and present a method to estimate such distance from below together with tight bounds for $d(\mathcal{W},c)$.

References

S. Banach, Théorie des opérations linéaires, Monografie Matematyczne, Warszawa, 1932.

C. Bessaga and A. Pelczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53–61.

M. Cambern, A generalized Banach–Stone theorem, Proc. Amer. Math. Soc. 17 (1966), 396–400.

M. Cambern, Isomorphisms of C0 (Y ) with Y discrete, Math. Ann. 188 (1970), 23–25.

M. Cambern, On mappings of sequence spaces, Studia Math. 30 (1968), 73-77.

L. Candido and E.M. Galego, How far is C0 (Γ, X) with Γ discrete from C0 (K, X) spaces? Fund. Math. 218 (2012), 151–163.

L. Candido and E.M. Galego, How far is C(ω) from the other C(K) spaces? Studia Math. 217 (2013), no. 2, 123–138.

T. Domı́nguez Benavides and M. Japón, Non-expansive mappings in spaces of continuous functions, Extracta Math. 19 (2004), 1–20.

A. Gergont and L. Piasecki, The Banach–Mazur distance between isomorphic spaces of continuous functions is not always an integer number, J. Math. Anal. Appl. 357 (2024), no. 2, 128305.

A. Gergont and L. Piasecki, On isomorphic embeddings of c into L1 -preduals and some applications, J. Math. Anal. Appl. 492 (2020), no. 1, 124431, 11 pp.

A. Gergont and L. Piasecki, Some topological and metric properties of the space of `1 -predual hyperplanes in c, Colloq. Math. 168 (2022), no. 2, 229–247.

Y. Gordon, On the distance coefficient between isomorphic function spaces, Israel J. Math. 8 (1970), 391–397.

V. Gurariĭ, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk. 167 (1966), 971–973.

S. Mazurkiewicz and W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17–27.

R. McWilliams, On projections of separable subspaces of (m) onto (c), Proc. Amer. Math. Soc. 10 (1959), 872–876.

A.A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150–156. (Russian)

L. Piasecki and J. Villada, The Banach–Mazur distance between between C(∆) and C0 (∆) equals 2, Topol. Methods Nonlinear Anal. (to appear).

Z. Semadeni, Free compact convex sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 141–146.

Topological Methods in Nonlinear Analysis

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-12-11

How to Cite

1.
VILLADA BEDOYA, Jeimer. An estimation of the Banach-Mazur distance between the space of convergent sequences and a concrete model of a space of affine continuous functions. Topological Methods in Nonlinear Analysis. Online. 11 December 2025. pp. 1 - 10. [Accessed 14 December 2025]. DOI 10.12775/TMNA.2025.033.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop