Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Periodic solutions to non-autonomous predator-prey systems with multiple and time-dependent delays
  • Home
  • /
  • Periodic solutions to non-autonomous predator-prey systems with multiple and time-dependent delays
  1. Home /
  2. Archives /
  3. Vol 66, No 1 (September 2025) /
  4. Articles

Periodic solutions to non-autonomous predator-prey systems with multiple and time-dependent delays

Authors

  • Heli Elorreaga https://orcid.org/0000-0003-2010-6382
  • Adrian Gomez https://orcid.org/0000-0002-2978-4465
  • Nolbert Morales https://orcid.org/0009-0009-8114-1537
  • Manuel Zamora

DOI:

https://doi.org/10.12775/TMNA.2025.012

Keywords

Functional-differential equations with state-dependent arguments, non-autonomous systems, differential delay equation, periodic solutions, degree theory

Abstract

In this paper we establish the existence of at least one positive periodic solution for the following non-autonomous predator-prey systems of delay differential equations:\begin{align*} x'(t)&=\alpha(t)x(t-\tau_{11}(t))f(t,x(t-\tau_{12}(t)),y(t-\tau_{13}(t))),\\ y'(t)&=\beta(t)y(t-\tau_{21}(t))g(t,x(t-\tau_{22}(t)),y(t-\tau_{23}(t))). \end{align*} Our approach considers the coefficients and delays as periodic functions. We apply this approach to specific biological problems and derive sufficient conditions guaranteeing the existence of positive periodic solutions for each case of the system. It is noteworthy that, except for the periodicity of the delays, we do not impose any additional conditions on them.

References

U. an der Heiden, Periodic solutions of a nonlinear second order differential equation with delay, J. Math. Anal. App. 70 (1979), 599–609.

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl. 254 (2001), 433-463.

R.E. Gaines and J.L. Mawhin, Coincidence Degree, and Non-linear Differential Equations, Springer, Berlin, 1977.

R. Hakl, P.J. Torres and M. Zamora, Periodic solutions of singular second order differential equations: Upper and lower functions, Nonlinear Anal. 74 (2011), 7078–7093.

J.K. Hale and A.F. Ivanov, On a high order differential delay equation, J. Math. Anal. App. 173 (1993), no. 2, 505–514.

H. Hai-Feng, Existence of positive periodic solutions of a neutral delay Lotka–Volterra system with impulses, Comput. Math. Appl. 48 (2004), 1833–1846.

Y. Li, On a periodic neutral delay Lotka–Volterra system, Nonlinear Anal. 39 (2000), 767–778.

J. Mallet-Paret and G.R. Sell, The Poincaré–Bendixson theorem for monotone cyclic feedback systems with delay, J. Differential Equations 125 (1996), 441–489.

J.L. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conf. Ser. in Math., vol. 40, Amer. Math. Soc. Providence, RI, 1979.

S. Ruan, Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays, Quart. Appl. Math. 59 (2001), 159–173.

R. Smith, Existence of periodic orbits of autonomous retarded functional differential equations, Math. Proc. Cambridge Philos. Soc. 88 (1980), no. 1, 89–109.

Y. Song, Y. Peng and J. Wei, Bifurcations for a predator-prey system with two delays, J. Math. Anal. Appl. 337 (2008), 466–479.

Y. Song and J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl. 301 (2005), 1–21.

P. Táboas, Periodic solutions of a planar delay equation, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), 85–101.

J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998), 4799–4838.

C. Xiao and D. Zengji Existence of positive periodic solutions for a neutral delay predatorprey model with Hassell-Varley type functional response and impulse, Qual. Theory Dyn. Syst. 17 (2018), 67–80.

L. Xiaowan and J. Shuguan, Existence of positive periodic solutions for a neutral impulsive predator-prey model with Crowley–Martin functional response, Proc. Amer. Math. Soc. 149 (2021), 4891–4906.

X.P. Yan and W. T. Li, Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Appl. Math. Comput. 177 (2006), 427–445.

L. Zhenguo, L. Liping, L. Yang and Y. Zeng, Global positive periodic solutions for periodic two-species competitive systems with multiple delays and impulses, Abstr. Appl. Anal. (2014), Art. ID 785653, 23 pp.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-10-01

How to Cite

1.
ELORREAGA, Heli, GOMEZ, Adrian, MORALES, Nolbert and ZAMORA, Manuel. Periodic solutions to non-autonomous predator-prey systems with multiple and time-dependent delays. Topological Methods in Nonlinear Analysis. Online. 1 October 2025. Vol. 66, no. 1, pp. 151 - 167. [Accessed 12 December 2025]. DOI 10.12775/TMNA.2025.012.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 66, No 1 (September 2025)

Section

Articles

License

Copyright (c) 2025 Heli Elorreaga, Adrian Gomez, Nolbert Morales, Manuel Zamora

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop