Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Existence of ground state solutions for the nonlinear elliptic equations with zero mass on lattice graphs
  • Home
  • /
  • Existence of ground state solutions for the nonlinear elliptic equations with zero mass on lattice graphs
  1. Home /
  2. Archives /
  3. Vol 66, No 1 (September 2025) /
  4. Articles

Existence of ground state solutions for the nonlinear elliptic equations with zero mass on lattice graphs

Authors

  • Chao Ji https://orcid.org/0000-0002-2657-0509
  • Olímpio H. Miyagaki https://orcid.org/0009-0002-6847-3472

DOI:

https://doi.org/10.12775/TMNA.2025.005

Keywords

Lattice graphs, zero mass, ground states, variational methods, elliptic equations

Abstract

In this paper, we will study the following nonlinear elliptic equation with zero mass on the lattice graph \begin{equation}\label{A}\tag{A} \begin{cases} -\Delta_{p} u= K(x)f(u) & \hbox{in } \mathbb{Z}^N, \\ u\in D^{1, p}\big(\mathbb{Z}^N\big), \end{cases} \end{equation} where $ N\geq 3$, $1< p< N$, $K$ is a nonnegative potential function, $f$ is a continuous function with quasicritical growth or supercritical growth. By employing variational methods, we establish the existence of ground states for the above equation with an asymptotically periodic potential and vanishing potential at infinity. For the case of asymptotically periodic potential, we also generalize the main result from $\mathbb{Z}^N$ to quasi-transitive graphs.

References

C.O. Alves and M.A.S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differential Equations 254 (2013), 1977–1991.

C.O. Alves, M.A.S. Souto and M. Montenegro, Existence of solution for two classes of elliptic problems in RN with zero mass, J. Differential Equations 252 (2012), 5735–5750.

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS) 7 (2005), 117–144.

V. Ambrosio, Zero mass case for a fractional Berestycki–Lions-type problem, Adv. Nonlinear Anal. 7 (2018), 365–374.

A. Azzollini and A. Pomponio, Compactness results and applications to some “zero mass” elliptic problems, Nonlinear Anal. 69 (2008), 3559–3576.

A. Azzollini and A. Pomponio, On a “zero mass” nonlinear Schrödinger equation, Adv. Nonlinear Stud. 7 (2007), 599–628.

V. Benci and D. Fortunato, Towards a unified theory for classical electrodynamics, Arch. Ration. Mech. Anal. 173 (2004), 379–414.

V. Benci, C.R. Grisanti and A.M. Micheletti, Existence and non-existence of the ground state solution for the nonlinear Schrödinger equations with V (∞) = 0, Topol. Methods Nonlinear Anal. 26 (2005), 203–219.

V. Benci, C.R. Grisanti and A.M. Micheletti, Existence of solutions for the nonlinear Schrödinger equations with V (∞) = 0, Contributions to Non-Linear Analysis, Progr. Nonlinear Differential Equations Appl., vol. 66, Birkhäuser, Basel, 2006, pp. 53–65.

V. Benci and A.M. Micheletti, Solutions in exterior domains of null mass nonlinear field equations, Adv. Nonlinear Stud. 6 (2006), 171–198.

H. Berestycki and P.L. Lions, Nonlinear scalar field equations I, Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313–345.

B. Gidas, Bifurcation phenomena in Mathematical Physics and Related Topics, NATO Adv. Study Inst. Ser. C Math. Phys. Sci., vol. 54, D. Reidel Publishing CompanyDordrecht, 1980.

B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

A. Grigor’yan, Introduction to Analysis on Graphs, University Lecture Series, vol. 71, American Mathematical Society, Providence, RI, 2018, pp. viii+150.

A. Grigor’yan, Y. Lin and Y.Y. Yang, Yamabe type equations on graphs, J. Differential Equations 261 (2016), 4924–4943.

A. Grigor’yan, Y. Lin and Y.Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math. 60 (2017), 1311–1324.

Z.T. He and C. Ji, Existence and multiplicity of solutions for the logarithmic Schrödinger equation with a potential on lattice graphs, J. Geom. Anal. 34 (2024), paper no. 378, 3 pp.

Z.T. He and C. Ji, The double phase problems on lattice graphs, J. Differential Equations 438 (2025), 113380.

B.B. Hua and R.W. Li, The existence of extremal functions for discrete Sobolev inequalities on lattice graphs, J. Differential Equations 305 (2021), 224–241.

B.B. Hua, R.W. Li and F. Münch, Extremal functions for the second-order Sobolev inequality on groups of polynomial growth (2022), arXiv: 2205.00150v1.

B. B. Hua and L.L. Wang, Dirichlet p-Laplacian eigenvalues and Cheeger constants on symmetric graphs, Adv. Math. 364 (2020), 106997.

B.B. Hua and W.D. Xu, Existence of ground state solutions to some nonlinear Schrödinger equations on lattice graphs, Calc. Var. Partial Differential Equations 62 (2023), no. 127, 17 pp.

B.B. Hua and W.D. Xu, The existence of ground state solutions for nonlinear pLaplacian equations on lattice graphs (2023), arXiv: 2310.08119v1.

A. Huang, Y. Lin and S.-T. Yau, Existence of solutions to mean field equations on graphs, Comm. Math. Phys. 377 (2020), 613–621.

M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th ed., Springer, Berlin, 2008.

W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Mathematics, vol. 138, Cambridge University Press-Cambridge, 2000.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-10-01

How to Cite

1.
JI, Chao and MIYAGAKI, Olímpio H. Existence of ground state solutions for the nonlinear elliptic equations with zero mass on lattice graphs. Topological Methods in Nonlinear Analysis. Online. 1 October 2025. Vol. 66, no. 1, pp. 109 - 127. [Accessed 12 December 2025]. DOI 10.12775/TMNA.2025.005.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 66, No 1 (September 2025)

Section

Articles

License

Copyright (c) 2025 Chao Ji, Olímpio H. Miyagaki

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop