Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

Minimizing travelling waves for the one-dimensional nonlinear Schrödinger equations with non-zero condition at infinity
  • Home
  • /
  • Minimizing travelling waves for the one-dimensional nonlinear Schrödinger equations with non-zero condition at infinity
  1. Home /
  2. Archives /
  3. Vol 66, No 1 (September 2025) /
  4. Articles

Minimizing travelling waves for the one-dimensional nonlinear Schrödinger equations with non-zero condition at infinity

Authors

  • Jordan Berthoumieu

DOI:

https://doi.org/10.12775/TMNA.2024.059

Keywords

Schrödinger equation, travelling waves, variational argument, orbital stability

Abstract

This paper deals with the existence of travelling wave solutions for a general one-dimensional nonlinear Schrödinger equation. We construct these solutions by minimizing the energy under the constraint of fixed momentum. We also prove that the family of minimizers is stable. Our method is based on recent articles about the orbital stability for the classical and nonlocal Gross-Pitaevski{\u\i} equations \cite{BetGrSa2}, \cite{deLaMen1}. It relies on a concentration-compactness theorem, which provides some compactness for the minimizing sequences and thus the convergence (up to a subsequence) towards a travelling wave solution.

References

M. Abid, C. Huepe, S. Metens, C. Nore, C.T. Pham, L.S. Tuckerman and M.E.Brachet, Gross–Pitaevskiı̆ dynamics of Bose–Einstein condensates and superfluid turbulence, Fluid Dynamics Research 33 (2003), no. 5–6, 509–544.

J. Bellazzini and D. Ruiz, Finite energy traveling waves for the Gross–Pitaevskiı̆ equation in the subsonic regime, Amer. J. Math. (2021), in press.

H. Berestycki and P.-L. Lions, Nonlinear scalar fields equations I, Arch. Rational Mech. Anal. 82 (1983), 313–345.

F. Bethuel, P. Gravejat and J.-C. Saut, Existence and properties of travelling waves for the Gross–Pitaevskiı̆ equation, Stationary and Time Dependent Gross–Pitaevskiı̆ equations (A. Farina and J.-C. Saut, eds.), Contemp. Math., vol. 473, Amer. Math. Soc., Providence, RI, 2008, pp. 55–104.

F. Bethuel, P. Gravejat and J.-C. Saut, Travelling waves for the Gross–Pitaevskiı̆ equation II, Comm. Math. Phys. 285 (2009), 567–651.

F. Bethuel, P. Gravejat, J.-C. Saut and D. Smets, Orbital stability of the black soliton for the Gross–Pitaevskiı̆ equation, Indiana Univ. Math. J. 57 (2008), 2611–2642.

F. Bethuel, P. Gravejat, J.-C. Saut and D. Smets, On the Korteweg–de Vries longwave approximation of the Gross–Pitaevskiı̆ equation I, Int. Math. Res. Not. 2009 (2009), 2700–2748.

F. Bethuel, P. Gravejat, J.-C. Saut and D. Smets, On the Korteweg–de Vries longwave approximation of the Gross–Pitaevskiı̆ equation II, Commun. Partial Differential Equations 35 (2010), 113–164.

F. Bethuel, G. Orlandi and D. Smets, Vortex rings for the Gross–Pitaevskiı̆ equation, J. Eur. Math. Soc. 6 (2004), 17–94.

T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger Comm. Math. Phys. 85 (1982), no. 4, 549–561.

D. Chiron, Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity 25 (2012), 813–850.

D. Chiron, Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one, Anal. Partial Differential Equations 6 (2013), 1327–1420.

D. Chiron, Error bounds for the (KdV)/(KP-I) and the (gKdV)/(gKP-I) asymptotic regime for nonlinear Schrödinger type equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 1175–1230.

D. Chiron and M. Maris, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Arch. Ration. Mech. Anal. 226 (2017), 143–242.

D. Chiron and F. Rousset, The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM J. Math. Anal. 42 (2010), 64–96.

C. Coste, Nonlinear Schrödinger equation and superfluid hydrodynamics, Eur. Phys. J. B 1 (1998), 245–253.

A. de Laire and P. Mennuni, Traveling waves for some nonlocal 1D Gross–Pitaevskiı̆ equations with nonzero conditions at infinity, Discrete Contin. Dyn. Syst. 40 (2020), 635–682.

C. Gallo, Schrödinger group on Zhidkov spaces Adv. Differential Equations 9 (2004), no. 5–6, 509–538.

C. Gallo, The Cauchy problem for defocusing nonlinear Schrödinger equations with nonvanishing initial data at infinity, Commun. Partial Differential Equations 33 (2008), no. 5, 729–771.

P. Gérard, The Cauchy problem for the Gross–Pitaevskiı̆ equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006), 765–779.

V.L. Ginzburg and L.P. Pitaevskiı̆, On the theory of superfluidity, Sov. Phys. JETP 34 (1958), 1240.

M. Grillakis, J. Shatah and W.A. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987), 160–197.

E.P. Gross, Hydrodynamics of a superfluid condensate, J. Math. Phys. 4 (1963), no. 2, 195–207.

R. Killip, T. Oh, O. Pocovnicu and M. Visan, Global well-posedness of the Gross–Pitaevskiı̆ and cubic-quintic nonlinear Schrödinger equations with non-vanishing boundary conditions, Math. Res. Lett. 19 (2012),969–986.

Y.S. Kivshar and B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Rep. 298 (1998), no. 2–3, 81–197.

Z. Lin, Stability and instability of traveling solitonic bubbles, Adv. Differential Equations 7 (2002), no. 8, 897–918.

P.-L. Lions, The concentration-compactness principle in the calculus of variations, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 2, 109–145.

M. Maris, Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with non-zero conditions at infinity, SIAM J. Math. Anal. 40 (2008), 1076–1103.

M. Maris, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Ann. of Math. 178 (2013), 107–182.

L.P. Pitaevskiı̆, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13 (1961), no. 2, 451–454.

V.E. Zakharov and E.A. Kuznetsov, Multi-scales expansion in the theory of systems integrable by the inverse scattering transform, Phys. D 18 (1986), no. 1–3, 455–463.

P.E. Zhidkov, Korteweg–De Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Mathematics, vol. 1756, Springer–Verlag, Berlin, 2001.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-10-01

How to Cite

1.
BERTHOUMIEU, Jordan. Minimizing travelling waves for the one-dimensional nonlinear Schrödinger equations with non-zero condition at infinity. Topological Methods in Nonlinear Analysis. Online. 1 October 2025. Vol. 66, no. 1, pp. 337 - 386. [Accessed 12 December 2025]. DOI 10.12775/TMNA.2024.059.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 66, No 1 (September 2025)

Section

Articles

License

Copyright (c) 2025 Jordan Berthoumieu

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop