Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On the degenerate Arnold conjecture on T^{2m} x CP^n
  • Home
  • /
  • On the degenerate Arnold conjecture on T^{2m} x CP^n
  1. Home /
  2. Archives /
  3. Online First Articles /
  4. Articles

On the degenerate Arnold conjecture on T^{2m} x CP^n

Authors

  • Luca Asselle https://orcid.org/0000-0003-4500-7225
  • Maciej Starostka

DOI:

https://doi.org/10.12775/TMNA.2025.011

Keywords

Arnold conjecture, Conley index

Abstract

In the 1960s Arnold conjectured that a Hamiltonian diffeomorphism of a closed connected symplectic manifold $(M,\omega)$ should have at least as many contractible fixed points as a smooth function on $M$ has critical points. Such a conjecture can be seen as a natural generalization of Poincaré's last geometric theorem and represents one of the most famous problems in symplectic geometry — still open today in its full generality. In this paper, we build on a recent approach of the authors and Izydorek to the Arnold conjecture on $\mathbb C\mathbb P^n$ to show that the (degenerate) Arnold conjecture holds for Hamiltonian diffeomorphisms $\phi$ of $\T^{2m}\times \mathbb C\mathbb P^n$, $m,n\geq 1$, which are $C^0$-close to the identity in the $\mathbb C \mathbb P^n$-direction, namely that any such $\phi$ has at least $\text{CL}\big(\T^{2m}\times \mathbb C\mathbb P^n\big)+1= 2m+n+1$ contractible fixed points.

References

L. Asselle, M. Izydorek and M. Starostka, The Arnold conjecture on CPn and the Conley index, Discrete Contin. Dyn. Syst. Ser. B 28 (2023), issue 4, DOI: 10.3934/dcdsb.2022184.

C. Conley, Isolated Invariant Sets and the Morse Index, CMBS Reg. Conf. Ser. Math. no. 38, Amer. Math. Soc., 1978.

C. Conley and E. Zehnder, The Birkhoff–Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math. 73 (1983), 33–49.

O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik–Schnirelmann Category, Amer. Math. Soc., 2003.

Z. Dzedzej, K. Gȩba and W. Uss, The Conley index, cup-length and bifurcation, J. Fixed Point Theory Appl. 10 (2011), no. 2, 233–252.

A. Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), 513–547.

A. Floer, Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989), 575–611.

B. Fortune, A symplectic fixed point theorem for CPn , Invent. Math. 81 (1985), no. 1, 29–46.

K. Fukaya and K. Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999), no. 5, 933–1048.

K. Fukaya and K. Ono, Arnold conjecture and Gromov–Witten invariant for general symplectic manifolds, The Arnoldfest. Proceedings of a conference in honour of V.I. Arnold for his 60th birthday, Toronto, Canada, June 15–21 (1997), (E. Bierstone et al., eds), vol. 24, 1999.

K. Gȩba, M. Izydorek and A. Pruszko, The Conley index in Hilbert spaces and its applications, Studia Math. 134 (1999), no. 3, 217–233.

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser, 1994.

M. Izydorek, A cohomological Conley index in Hilbert spaces and applications to strongly indefinite problems, J. Differential Equations 170 (2001), no. 1, 22–50.

G. Liu and G. Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998), no. 1, 1–74.

Y-G. Oh, A symplectic fixed point theorem on T2n × CPk , Math. Z. 203 (1990), no. 1, 535–552.

T.O. Rot, M. Starostka and N. Waterstraat, The relative cup-length in local Morse cohomology, Topol. Methods Nonlinear Anal. 64 (2024), no. 1, 15–29.

Yu.B. Rudyak and J. Oprea, On the Lusternik–Schnirelmann category of symplectic manifolds and the Arnold conjecture, Math. Z. 230 (1999), no. 4, 673–678.

M. Starostka and N. Waterstraat, The E-Cohomological Conley index, cup-lengths and the Arnold conjecture on T2n , Adv. Nonlinear Stud. 19 (2019), no. 3, 519–528, DOI: 10.1515/ans-2019-2044.

Online First Articles

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-06-14

How to Cite

1.
ASSELLE, Luca and STAROSTKA, Maciej. On the degenerate Arnold conjecture on T^{2m} x CP^n. Topological Methods in Nonlinear Analysis. Online. 14 June 2025. pp. 1 - 16. [Accessed 5 July 2025]. DOI 10.12775/TMNA.2025.011.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Online First Articles

Section

Articles

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop