Characterizing Lipschitz images of injective metric spaces
DOI:
https://doi.org/10.12775/TMNA.2024.058Keywords
Injective metric space, Lipschitz map, Lipschitz image, Urysohn metric space, Lipschitz connected metric spaceAbstract
A metric space $X$ is {\em injective} if every non-expanding map $f \colon B\to X$ defined on a subspace $B$ of a metric space $A$ can be extended to a non-expanding map $\overline f \colon A\to X$. We prove that a metric space $X$ is a Lipschitz image of an injective metric space if and only if $X$ is {\em Lipschitz connected} in the sense that for every points $x,y\in X$, there exists a Lipschitz map $f \colon [0,1]\to X$ such that $f(0)=x$ and $f(1)=y$. In this case the metric space $X$ carries a well-defined intrinsic metric. A metric space $X$ is a Lipschitz image of a compact injective metric space if and only if $X$ is compact, Lipschitz connected and its intrinsic metric is totally bounded. A metric space $X$ is a Lipschitz image of a separable injective metric space if and only if $X$ is a Lipschitz image of the Urysohn universal metric space if and only if $X$ is analytic, Lipschitz connected and its intrinsic metric is separable.References
N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), no. 3, 405–439.
D. Baboolal and P. Pillay, Some remarks on rectifiably connected metric spaces, Topology Appl. 251 (2019), 107–124.
T. Banakh and F. Strobin, Embedding topological fractals in universal spaces, J. Fractal Geom. 2 (2015), no. 4, 377–388.
Y. Beniamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, American Mathematical Society Colloquium Publications, vol. 48, 2000.
S.A. Bogatyi, Compact homogeneity of Uryson’s universal metric space, Russ. Math. Surv. 55 (2000), no. 2, 332–333.
B.H. Bowditch, Median and injective metric spaces, Math. Proc. Cambridge Philos. Soc. 168 (2020), no. 1, 43–55.
H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
I. Chiswell, Introduction to Λ-trees, World Scientific Publishing Co. Pte. Ltd., 2001.
S. Eilenberg and O.G. Harrold, Jr., Continua of finite linear measure, Amer. J. Math. 65 (1943), 137–146.
R. Engelking, General Topology, Helderman Verlag Berlin, Sigma Series in Pure Mathematics, vol. 6, 1989.
M. Espinola and M.A. Khamsi, Introduction to hyperconvex spaces, Handbook of Metric Fixed Point Theory, (W.A. Kirk and B. Sims, eds), Springer, Dordrecht, DOI:10.1007/978-94-017-1748-9_13.
K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.
H. Gluck, Instrinsic metrics, Amer. Math. Mon. 73 (1966), no. 9, 937–950.
H. Hahn, Mengentheoretische charakterisierung der stetigen kurven, Sitzungsber. Akad. Wiss. Wien 123 (1914), 2433–2489.
G.E. Huhunaišvili, On a property of Uryson’s universal metric space, Soviet Math. Dokl. 101 (1955), 607–610.
A. Kechris, Classical Descriptive Set Theory, Springer, 1995.
W. Kirk, Hyperconvexity of R-trees, Fund. Math. 156 (1998), 67–72.
W. Kubiś, Injective objects and retracts of Fraïssé limits, Forum Math. 27 (2015), no. 2, 807–842.
W. Kubiś and M. Rubin, Extension theorems and reconstruction theorems for the Urysohn universal space, Czechoslovak Math. J. 60 (135) (2010), no. 1, 1–29.
S. Mazurkiewicz, Sur les lignes de Jordan, Fund. Math. 1 (1920), 166–209.
J. Melleray, On the geometry of Urysohn’s universal metric space, Topology Appl. 154 (2007), no. 2, 384–403.
M.E. Rudin, Nikiel’s conjecture, Topology Appl. 116 (2001), no. 3, 305–331.
P. S. Urysohn, Sur un espace métrique iuniversel, Bull. Sci. Math 51 (1927), 43–64, 74–96.
T. Ważewski, Kontinua prostowalne w zwiazku z funkcjami i odwzorowaniami absolutnie ciągłymi, Annales de la Société Polonaise de Mathématique, supplement (1927), 9–49.
Published
How to Cite
Issue
Section
Stats
Number of views and downloads: 0
Number of citations: 0