Structure of the set of fixed points of uniformly Lipschitzian semigroups in CAT(0) spaces
DOI:
https://doi.org/10.12775/TMNA.2024.050Słowa kluczowe
Fixed points, semigroups of mappings, Lipschitz mappings, CAT(0) spaceAbstrakt
Fixed points for semigroups of $k$-Lipschitz mappings have been recently studied under the considerations that the semigroup satisfies a mild amenability condition or that it is left reversible. Both approaches have brought positive results on existence of fixed points and structure of the set of fixed points. In the case of the amenable condition, results have been obtained for Hilbert spaces; in the case of left reversible semigroups, results were first obtained for Hilbert spaces and then extended to $p$-uniformly convex spaces. In this work, we address both approaches in the non linear context of complete CAT(0) spaces, providing counterparts of the most relevant results for each one of them.Bibliografia
M.R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Springer–Verlag, Berlin, 1999.
R.E. Bruck, Properties of fixed-point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251–262.
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Math., vol. 33, Amer. Math. Soc., Providence, RI, 2001.
R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139–1141.
M.M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544.
S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 65 (2006), 762–772.
D.J. Downing and W.O. Ray, Uniformly Lipschitzian semigroups in Hilbert space, Canad. Math. Bull. 25 (1982), 210–214.
K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
K. Goebel and W.A. Kirk, A fixed point theorem for transformations whose iterates have uniform Lipschitz constant, Studia Math. 47 (1973), 135–140.
J. Górnicki, Remarks on the structure of the fixed-point sets of uniformly Lipschitzian mappings in uniformly convex Banach spaces, J. Math. Anal. Appl. 355 (2009), 303–310.
J. Górnicki, The structure of fixed-point sets of uniformly Lipschitzian semigroups, Collect. Math. 63 (2012), 333–344.
R.D. Gray and M. Kambites, Amenability and geometry of semigroups, Trans. Amer. Math. Soc. 369 (2017), 8087–8103.
R.D. Holmes and A.T. Lau, Nonexpansive actions of topological semigroups and fixed points, J. Lond. Math. Soc. 2 (1972), no. 2, 330–336.
H. Ishihara and W. Takahashi, Fixed point theorems for uniformly Lipschitzian semigroups in Hilbert spaces, J. Math. Anal. Appl. 127 (1987), 206–210.
M. Kell, Uniformly convex metric spaces, Anal. Geom. Metr. Spaces 2 (2014), 359–380.
A. T.-M. Lau, Semigroup of nonexpansive mappings on a Hilbert space, J. Math. Anal. Appl. 105 (1985), 514–522.
E.A. Lifschitz, Fixed point theorems for operators in strongly convex spaces, Voronez Gos. Univ. Trudy Mat. Fak. 16 (1975), 23–28. (Russian)
T. Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630–641.
A.L.T. Paterson, Weak containment and Clifford semigroups, Proc. Royal Soc. Edinburgh 81A (1978), 23–30.
V. Pérez Garcı́a and H. Fetter Nathansky, Fixed points of periodic mappings in Hilbert spaces, Ann. Univ. Mariae Curie-Sklodowska Sec. A 64 (2010), 37–48.
E. Sȩdlak and A. Wiśnicki, On the structure of fixed-point sets of uniformly Lipschitzian mappings, Topol. Methods Nonlinear Anal. 30 (2007), 345–350.
A. Wiśnicki, Hölder continuous retractions and amenable semigroups of uniformly Lipschitzian mappings in Hilbert spaces, Topol. Methods Nonlinear Anal. 43 (2014), 89–96.
H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), 1127–1138.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Rafael Espínola García, Aleksandra Huczek

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0