Σ-shaped bifurcation curves influenced by nonlinear boundary conditions for classes of reaction diffusion systems
DOI:
https://doi.org/10.12775/TMNA.2024.040Słowa kluczowe
Steady states, reaction-diffusion, nonlinear boundary conditions, bifurcation curves, multiplicityAbstrakt
We analyse positive solutions to steady state reaction diffusion systems of the form: \begin{equation*} \begin{cases} - \Delta u = \lambda f_1(v) &\text{in } \Omega, \\ - \Delta v = \lambda f_2(u)&\text{in } \Omega, \\ \noalign{\vskip3pt} \dfrac{\partial u}{\partial \eta}+ \sqrt{\lambda}g_1(v)u = 0 &\text{in }\partial \Omega,\\ \noalign{\vskip3pt} \dfrac{\partial v}{\partial \eta}+ \sqrt{\lambda}g_2(u)v = 0 &\text{in }\partial \Omega, \end{cases} \end{equation*} where $\lambda> 0$ is a parameter, $\Omega$ is a bounded domain in $\mathbb{R}^N$; $N > 1$ with smooth boundary $\partial \Omega$ or $\Omega=(0,1)$, $\frac{\partial z}{\partial \eta}$ is the outward normal derivative of $z$, $f_1, f_2 \in C([0, \infty) , [0, \infty))$ are increasing functions, differentiable on $[0, r)$ for some $r> 0$, $f_1(0) = f_2(0) = 0$, $f_1'(0) = f_2'(0) = 1$, $ \lim\limits_{s \to \infty} {f_1(Mf_2(s))}/{s} = 0 $ for each $M> 0$ ($f_1, f_2$ satisfy a combined sublinear condition at infinity), $g_1, g_2 \in C([0, \infty) , (0, 1])$ are nonincreasing functions such that $g_1(0)= g_2(0)=1$, and $\underline{g} := \min\Big \{\lim\limits_{s \rightarrow \infty} g_1(s), \lim\limits_{s \rightarrow \infty} g_2(s)\Big\} > 0$. We discuss the existence of multiple positive solutions for certain ranges of $\lambda$ leading to the occurrence of $\Sigma$-shaped bifurcation diagrams. Our results are established via the method of sub-supersolutions.Bibliografia
A. Acharya, N. Fonseka, J. Quiroa and R. Shivaji, Σ-Shaped Bifurcation Curves, Adv. Nonlinear Anal. 10 (2021), no. 1, 1255–1266.
A. Acharya, N. Fonseka and R. Shivaji, Σ-shaped bifurcation curves for classes of elliptic systems, Discrete Contin. Dyn. Syst. Ser. S 15 (2022), no. 10, 2795–2806, MR 4470544.
A. Acharya, N. Fonseka and R. Shivaji, Analysis of reaction diffusion systems where a parameter influences both the reaction terms as well as the bounday, Bound. Value Probl. 2021 (2021), article no. 15, 8 pp.
J. Ali, M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Intergral Equations 19 (2006), no. 6, 669–680.
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620–709.
A. Castro, J.B. Garner and R. Shivaji, Existence results for classes of sublinear semipositone problems, Results Math. 23 (1993), 214–220.
J.T. Cronin, N. Fonseka, J. Goddard, J. Leonard and R. Shivaji, Modeling the effects of density dependent emigration, weak Allee effects, and matrix hostility on patch-level population persistence, Math. Biosci. Eng. 17 (2019), no. 2, 1718–1742.
J.T. Cronin, J. Goddard and R. Shivaji, Effects of patch-matrix composition and individual movement response on population persistence at the patch-level, Bull. Math. Biol. 81 (2019), no. 10, 3933–3975.
N. Fonseka, R. Shivaji, B. Son and K. Spetzer, Classes of reaction diffusion equations where a parameter influences the equation as well as the boundary condition, J. Math. Anal. Appl. 476 (2019), no. 2, 480–494.
J. Goddard II, Q. Morris, S. Robinson and R. Shivaji, An exact bifurcation diagram for a reaction diffusion equation arising in population dynamics, Bound. Value Probl. 1 (2018), article no. 170.
F. Inkmann, Existence and multiplicity theorems for semilinear elliptic equations with nonlinear boundary conditions, Indiana Univ. Math. J. 31 (1982), 213–221.
C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
M.A. Rivas and S. Robinson, Eigencurves for linear elliptic equations, ESAIM Control Optim. Calc. of Var. 25 (2019), 45.
R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications (V. Lakshmikantham, ed.), Lecture Notes in Pure and Applied Mathematics, vol. 109, 1987, pp. 561–566.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0