Common fixed points in Chebyshev center for a semigroup of isometry mappings
DOI:
https://doi.org/10.12775/TMNA.2024.035Słowa kluczowe
Isometry mappings, common fixed points, topological semigroup, semigroup action, left reversible semigroup, normal structure, Chebyshev centerAbstrakt
In this article, we prove that if $K$ is a nonempty weakly compact convex set having the normal structure in a Banach space $B$ and $\mathfrak{F}$ is a left reversible semitopological semigroup of isometry mappings from $K$ into itself, then there exists a point in $C(K)$ which is fixed by every member in $\mathfrak{F}$. This gives an affirmative answer to a question raised by Lim et al.Bibliografia
L.P. Belluce, W.A. Kirk and E.F. Steiner, Structure in Banach spaces, Pacific J. Math. 26 (1968), 433–440.
M.S. Brodskiı̆ and D.P. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR (N.S.) 59 (1948), 837–840.
A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, vol. I, Mathematical Surveys, No. 7. American Mathematical Society, Providence, R.I., 1961
M.M. Day, Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Amer. Math. Soc. 47 (1941), 313–317.
M. Edelstein, Fixed point theorems in uniformly convex Banach spaces, Proc. Amer. Math. Soc. 44 (1974), 369–374.
R. Geremia and F. Sullivan, Multidimensional volumes and moduli of convexity in Banach spaces, Ann. Mat. Pura Appl. 127 (1981), no. 4, 231–251.
K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.
E. Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367–379.
R.D. Holmes and A.T. Lau, Non-expansive actions of topological semigroups and fixed points, J. London Math. Soc. 5 (1972), no. 2, 330–336.
W.A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006.
W.A. Kirk and B. Sims (eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001.
A.T.-M. Lau and Y. Zhang, Fixed point properties of semigroups of non-expansive mappings, J. Funct. Anal. 254 (2008), no. 10, 2534–2554.
T.C. Lim, Characterizations of normal structure, Proc. Amer. Math. Soc. 43 (1974), 313–319.
T.C. Lim, A fixed point theorem for families on nonexpansive mappings, Pacific J. Math. 53 (1974), 487–493.
T.C. Lim, On asymptotic centers and fixed points of nonexpansive mappings, Canadian J. Math. 32 (1980), no. 2, 421–430.
T.C. Lim, P.-K. Lin, C. Petalas and T. Vidalis, Fixed points of isometries on weakly compact convex sets, J. Math. Anal. Appl. 282 (2003), no. 1, 1–7.
T. Mitchell, Fixed points of reversible semigroups of nonexpansive mappings, Kodai Math. Sem. Rep. 22 (1970), 322–323.
S. Rajesh and P. Veeramani, Lim’s center and fixed-point theorems for isometry mappings, Ann. Funct. Anal. 9 (2018), no. 2, 190–201.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Sharma Abhishek, Sankara Narayanan Rajesh

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Bez utworów zależnych 4.0 Międzynarodowe.
Statystyki
Liczba wyświetleń i pobrań: 0
Liczba cytowań: 0