Skip to main content Skip to main navigation menu Skip to site footer
  • Login
  • Language
    • English
    • Język Polski
  • Menu
  • Home
  • Current
  • Online First
  • Archives
  • About
    • About the Journal
    • Submissions
    • Editorial Team
    • Privacy Statement
    • Contact
  • Login
  • Language:
  • English
  • Język Polski

Topological Methods in Nonlinear Analysis

On Conley theory for generalized Gutierrez-Sotomayor flows
  • Home
  • /
  • On Conley theory for generalized Gutierrez-Sotomayor flows
  1. Home /
  2. Archives /
  3. Vol 65, No 1 (March 2025) /
  4. Articles

On Conley theory for generalized Gutierrez-Sotomayor flows

Authors

  • Dahisy V. de S. Lima https://orcid.org/0000-0002-7654-822X
  • Denilson Tenório https://orcid.org/0000-0001-8692-9176

DOI:

https://doi.org/10.12775/TMNA.2024.032

Keywords

Conley index, Lyapunov function, GS singularities, Euler-Poincaré characteristic

Abstract

This paper presents a study, based on Conley's theory, of continuous flows on singular surfaces that admit singularities such as $n$-sheet cones, $n$-sheet cross-caps, $n$-sheet double crossings, $n$-sheet triple crossings, and mixed Gutierrez-Sotomayor (GS) singularities. These flows are referred to as generalized Gutierrez-Sotomayor (GS) flows. The Conley index for each type of singularity is computed. Furthermore, the results from previous works on the local and global existence of Lyapunov functions are extended to encompass generalized GS singularities. Necessary and sufficient conditions for defining a generalized GS flow on an isolating block are established. Additionally, an alternative formula, expressed in terms of a deeper dynamical perspective, for computing the Euler-Poincaré characteristic of generalized GS manifolds is introduced.

References

M.A. Bertolim, D.V.S. Lima, M.P. Mello K.A. de Rezende and M.R. Silveira, A global two-dimensional version of Smale’s cancellation theorem via spectral sequences, Ergodic Theory Dynam. Systems 36 (2016), no. 6, 1795–1838.

M.A. Bertolim, M.P. Mello and K.A. de Rezende, Poincaré–Hopf inequalities, Trans. Amer. Math. Soc. 357 (2004), 4091–4129.

C.C. Conley, Isolated Invariant Sets and the Morse Index, American Mathematical Soc., no. 38, 1978.

C.C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), no. 1, 35–61.

K.A. de Rezende, N.G. Grulha Jr, D.V.S. Lima and M.A. Zigart, Gutierrez–Sotomayor flows on singular surfaces, Topol. Methods Nonlinear Anal. 60 (2022), no. 1, 221–265.

C.T. Gutierrez and J. Sotomayor, Stable vector fields on manifolds with simple singularities, Proc. London Math. Soc. 3 (1982), no. 1, 97–112.

D.V.S. Lima, O. Manzoli Neto and K.A. de Rezende, On handle theory for Morse–Bott critical manifolds, Geom. Dedicata 202 (2019), 265–309.

D.V.S. Lima, O. Mazoli Neto, K.A. de Rezende and M. R. Silveira, Cancellations for circle-valued Morse functions via spectral sequences, Topol. Methods Nonlinear Anal 51 (2018), no. 1, 259–311.

D.V.S. Lima, S.A. Raminelli and K.A. de Rezende, Homotopical cancellation theory for Gutierrez–Sotomayor singular flows, J. Singul. 23 (2021), 33–91.

D.V.S. Lima and K.A. de Rezende, Connection matrices for Morse–Bott flows, Topol. Methods Nonlinear Anal. 44 (2014), no. 2, 471–495.

D.V.S. Lima, M.R. da Silveira and E.R. Vieira, Covering action on Conley index theory, Ergodic Theory Dynam. Systems 43 (2023), no. 5, 1633–1665.

C. McCord, K. Mischaikow and M. Mrozek, Zeta functions, periodic trajectories, and the Conley index, J. Differential Equations 121 (1995), no. 2, 258–292.

K. Mischaikow and M. Mrozek, Isolating neighbourhoods and chaos., Japan J. Industrial Appl. Math. 12 (1995), 205–236.

H. Montúfar and K.A. de Rezende, Conley theory for Gutierrez–Sotomayor fields, J. Singul. 22 (2020), 241–277.

M. Mrozek and P. Pilarczyk, The Conley index and rigorous numerics for attracting periodic orbits, Variational and Topological Methods in the Study of Nonlinear Phenomena (Pisa, 2020), Progrress in Nonlinear Differential Equations and Their Applications, vol. 49, 2002, pp. 65–74.

M.M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), no. 2, 101–120.

M.C. Peixoto and M.M. Peixoto, Structural stability in the plane with enlarged boundary conditions, An. Acad. Brasil. Ciênc 31 (1959), no. 2, 135–160.

Downloads

  • PREVIEW
  • FULL TEXT

Published

2025-02-14

How to Cite

1.
LIMA, Dahisy V. de S. and TENÓRIO, Denilson. On Conley theory for generalized Gutierrez-Sotomayor flows. Topological Methods in Nonlinear Analysis. Online. 14 February 2025. Vol. 65, no. 1, pp. 343 - 382. [Accessed 5 July 2025]. DOI 10.12775/TMNA.2024.032.
  • ISO 690
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
Download Citation
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

Issue

Vol 65, No 1 (March 2025)

Section

Articles

License

Copyright (c) 2025 Dahisy V. de S. Lima, Denilson Tenório

Creative Commons License

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Stats

Number of views and downloads: 0
Number of citations: 0

Search

Search

Browse

  • Browse Author Index
  • Issue archive

User

User

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo

Newsletter

Subscribe Unsubscribe
Up

Akademicka Platforma Czasopism

Najlepsze czasopisma naukowe i akademickie w jednym miejscu

apcz.umk.pl

Partners

  • Akademia Ignatianum w Krakowie
  • Akademickie Towarzystwo Andragogiczne
  • Fundacja Copernicus na rzecz Rozwoju Badań Naukowych
  • Instytut Historii im. Tadeusza Manteuffla Polskiej Akademii Nauk
  • Instytut Kultur Śródziemnomorskich i Orientalnych PAN
  • Instytut Tomistyczny
  • Karmelitański Instytut Duchowości w Krakowie
  • Ministerstwo Kultury i Dziedzictwa Narodowego
  • Państwowa Akademia Nauk Stosowanych w Krośnie
  • Państwowa Akademia Nauk Stosowanych we Włocławku
  • Państwowa Wyższa Szkoła Zawodowa im. Stanisława Pigonia w Krośnie
  • Polska Fundacja Przemysłu Kosmicznego
  • Polskie Towarzystwo Ekonomiczne
  • Polskie Towarzystwo Ludoznawcze
  • Towarzystwo Miłośników Torunia
  • Towarzystwo Naukowe w Toruniu
  • Uniwersytet im. Adama Mickiewicza w Poznaniu
  • Uniwersytet Komisji Edukacji Narodowej w Krakowie
  • Uniwersytet Mikołaja Kopernika
  • Uniwersytet w Białymstoku
  • Uniwersytet Warszawski
  • Wojewódzka Biblioteka Publiczna - Książnica Kopernikańska
  • Wyższe Seminarium Duchowne w Pelplinie / Wydawnictwo Diecezjalne „Bernardinum" w Pelplinie

© 2021- Nicolaus Copernicus University Accessibility statement Shop